Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Center, University of Twente, Enschede, The Netherlands.
Department of Reproductive Medicine and Gynecology, University Medical Center, Utrecht, The Netherlands.
Ultrasound Obstet Gynecol. 2019 Aug;54(2):270-275. doi: 10.1002/uog.20181. Epub 2019 Jun 26.
To measure the length, width and area of the urogenital hiatus (UH), and the length and mean echogenicity (MEP) of the puborectalis muscle (PRM), automatically and observer-independently, in the plane of minimal hiatal dimensions on transperineal ultrasound (TPUS) images, by automatic segmentation of the UH and the PRM using deep learning.
In 1318 three- and four-dimensional (3D/4D) TPUS volume datasets from 253 nulliparae at 12 and 36 weeks' gestation, two-dimensional (2D) images in the plane of minimal hiatal dimensions with the PRM at rest, on maximum contraction and on maximum Valsalva maneuver, were obtained manually and the UH and PRM were segmented manually. In total, 713 of the images were used to train a convolutional neural network (CNN) to segment automatically the UH and PRM in the plane of minimal hiatal dimensions. In the remainder of the dataset (test set 1 (TS1); 601 images, four having been excluded), the performance of the CNN was evaluated by comparing automatic and manual segmentations. The performance of the CNN was also tested on 117 images from an independent dataset (test set 2 (TS2); two images having been excluded) from 40 nulliparae at 12 weeks' gestation, which were acquired and segmented manually by a different observer. The success of automatic segmentation was assessed visually. Based on the CNN segmentations, the following clinically relevant parameters were measured: the length, width and area of the UH, the length of the PRM and MEP. The overlap (Dice similarity index (DSI)) and surface distance (mean absolute distance (MAD) and Hausdorff distance (HDD)) between manual and CNN segmentations were measured to investigate their similarity. For the measured clinically relevant parameters, the intraclass correlation coefficients (ICCs) between manual and CNN results were determined.
Fully automatic CNN segmentation was successful in 99.0% and 93.2% of images in TS1 and TS2, respectively. DSI, MAD and HDD showed good overlap and distance between manual and CNN segmentations in both test sets. This was reflected in the respective ICC values in TS1 and TS2 for the length (0.96 and 0.95), width (0.77 and 0.87) and area (0.96 and 0.91) of the UH, the length of the PRM (0.87 and 0.73) and MEP (0.95 and 0.97), which showed good to very good agreement.
Deep learning can be used to segment automatically and reliably the PRM and UH on 2D ultrasound images of the nulliparous pelvic floor in the plane of minimal hiatal dimensions. These segmentations can be used to measure reliably UH dimensions as well as PRM length and MEP. © 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.
使用深度学习,自动、独立于观察者,在经会阴超声(TPUS)图像上最小裂孔平面测量尿生殖裂孔(UH)的长度、宽度和面积,以及耻骨直肠肌(PRM)的长度和平均回声强度(MEP)。
在 253 名 12 周和 36 周妊娠的初产妇的 1318 个三维(3D)和四维(4D)TPUS 容积数据集、2D 图像中,在 PRM 休息、最大收缩和最大瓦尔萨尔瓦动作的最小裂孔平面上手动获得图像,并手动分割 UH 和 PRM。总共 713 张图像用于训练卷积神经网络(CNN),以自动分割最小裂孔平面上的 UH 和 PRM。在数据集的其余部分(测试集 1(TS1);601 张图像,其中 4 张被排除)中,通过比较自动和手动分割来评估 CNN 的性能。该 CNN 的性能还在来自 40 名 12 周妊娠初产妇的另一个独立数据集(测试集 2(TS2);其中 2 张图像被排除)的 117 张图像上进行了测试,这些图像由另一位观察者手动采集和分割。通过视觉评估自动分割的成功。基于 CNN 分割,测量了以下临床相关参数:UH 的长度、宽度和面积、PRM 的长度和 MEP。测量手动和 CNN 分割之间的重叠(Dice 相似性指数(DSI))和表面距离(平均绝对距离(MAD)和 Hausdorff 距离(HDD)),以研究它们的相似性。对于测量的临床相关参数,确定了手动和 CNN 结果之间的组内相关系数(ICC)。
在 TS1 和 TS2 中,完全自动的 CNN 分割分别在 99.0%和 93.2%的图像中成功。在两个测试集中,DSI、MAD 和 HDD 显示手动和 CNN 分割之间具有良好的重叠和距离。这反映在 TS1 和 TS2 中各自的 ICC 值,UH 的长度(0.96 和 0.95)、宽度(0.77 和 0.87)和面积(0.96 和 0.91)、PRM 的长度(0.87 和 0.73)和 MEP(0.95 和 0.97),这表明具有良好到非常好的一致性。
深度学习可用于在经会阴超声图像上自动、可靠地分割初产妇盆底最小裂孔平面的 PRM 和 UH。这些分割可用于可靠地测量 UH 尺寸以及 PRM 长度和 MEP。© 2018 作者。《超声医学杂志》由 John Wiley & Sons Ltd 代表国际妇产科超声学会出版。