School of Engineering, University of Guelph, Guelph, Ontario, Canada.
Cosm Medical, Toronto, Ontario, Canada.
Med Phys. 2023 Oct;50(10):6215-6227. doi: 10.1002/mp.16389. Epub 2023 Apr 6.
Transperineal ultrasound (TPUS) is a valuable imaging tool for evaluating patients with pelvic floor disorders, including pelvic organ prolapse (POP). Currently, measurements of anatomical structures in the mid-sagittal plane of 2D and 3D US volumes are obtained manually, which is time-consuming, has high intra-rater variability, and requires an expert in pelvic floor US interpretation. Manual segmentation and biometric measurement can take 15 min per 2D mid-sagittal image by an expert operator. An automated segmentation method would provide quantitative data relevant to pelvic floor disorders and improve the efficiency and reproducibility of segmentation-based biometric methods.
Develop a fast, reproducible, and automated method of acquiring biometric measurements and organ segmentations from the mid-sagittal plane of female 3D TPUS volumes.
Our method used a nnU-Net segmentation model to segment the pubis symphysis, urethra, bladder, rectum, rectal ampulla, and anorectal angle in the mid-sagittal plane of female 3D TPUS volumes. We developed an algorithm to extract relevant biometrics from the segmentations. Our dataset included 248 3D TPUS volumes, 126/122 rest/Valsalva split, from 135 patients. System performance was assessed by comparing the automated results with manual ground truth data using the Dice similarity coefficient (DSC) and average absolute difference (AD). Intra-class correlation coefficient (ICC) and time difference were used to compare reproducibility and efficiency between manual and automated methods respectively. High ICC, low AD and reduction in time indicated an accurate and reliable automated system, making TPUS an efficient alternative for POP assessment. Paired t-test and non-parametric Wilcoxon signed-rank test were conducted, with p < 0.05 determining significance.
The nnU-Net segmentation model reported average DSC and p values (in brackets), compared to the next best tested model, of 87.4% (<0.0001), 68.5% (<0.0001), 61.0% (0.1), 54.6% (0.04), 49.2% (<0.0001) and 33.7% (0.02) for bladder, rectum, urethra, pubic symphysis, anorectal angle, and rectal ampulla respectively. The average ADs for the bladder neck position, bladder descent, rectal ampulla descent and retrovesical angle were 3.2 mm, 4.5 mm, 5.3 mm and 27.3°, respectively. The biometric algorithm had an ICC > 0.80 for the bladder neck position, bladder descent and rectal ampulla descent when compared to manual measurements, indicating high reproducibility. The proposed algorithms required approximately 1.27 s to analyze one image. The manual ground truths were performed by a single expert operator. In addition, due to high operator dependency for TPUS image collection, we would need to pursue further studies with images collected from multiple operators.
Based on our search in scientific databases (i.e., Web of Science, IEEE Xplore Digital Library, Elsevier ScienceDirect and PubMed), this is the first reported work of an automated segmentation and biometric measurement system for the mid-sagittal plane of 3D TPUS volumes. The proposed algorithm pipeline can improve the efficiency (1.27 s compared to 15 min manually) and has high reproducibility (high ICC values) compared to manual TPUS analysis for pelvic floor disorder diagnosis. Further studies are needed to verify this system's viability using multiple TPUS operators and multiple experts for performing manual segmentation and extracting biometrics from the images.
经会阴超声(TPUS)是评估盆底功能障碍患者(包括盆腔器官脱垂(POP))的一种有价值的影像学工具。目前,2D 和 3D US 容积的中矢状面解剖结构测量是手动获取的,这既耗时,又具有高度的内部评估者变异性,并且需要有盆底 US 解读经验的专家。一位专家手动分割和生物计量测量每 2D 中矢状图像需要 15 分钟。自动分割方法将提供与盆底功能障碍相关的定量数据,并提高基于分割的生物计量方法的效率和可重复性。
开发一种快速、可重复和自动化的方法,从女性 3D TPUS 容积的中矢状面获取生物计量测量值和器官分割。
我们的方法使用 nnU-Net 分割模型对女性 3D TPUS 容积的中矢状面的耻骨联合、尿道、膀胱、直肠、直肠壶腹和肛直肠角进行分割。我们开发了一种从分割中提取相关生物计量的算法。我们的数据集包括来自 135 名患者的 248 个 3D TPUS 容积,126/122 个静息/Valsalva 分裂。使用 Dice 相似系数(DSC)和平均绝对差(AD)比较自动结果与手动地面真实数据来评估系统性能。使用组内相关系数(ICC)和时间差异分别比较手动和自动方法的可重复性和效率。高 ICC、低 AD 和减少时间表明了准确可靠的自动化系统,使 TPUS 成为 POP 评估的有效替代方法。进行了配对 t 检验和非参数 Wilcoxon 符号秩检验,p<0.05 表示具有统计学意义。
nnU-Net 分割模型与下一个最佳测试模型相比,报告了平均 DSC 和 p 值(括号内),分别为 87.4%(<0.0001)、68.5%(<0.0001)、61.0%(0.1)、54.6%(0.04)、49.2%(<0.0001)和 33.7%(0.02),分别为膀胱、直肠、尿道、耻骨联合、肛直肠角和直肠壶腹。膀胱颈位置、膀胱下降、直肠壶腹下降和膀胱后角的平均 AD 分别为 3.2mm、4.5mm、5.3mm 和 27.3°。与手动测量相比,膀胱颈位置、膀胱下降和直肠壶腹下降的生物计量算法的 ICC>0.80,表明具有高可重复性。所提出的算法大约需要 1.27 秒来分析一个图像。手动地面真实数据是由一位专家操作完成的。此外,由于 TPUS 图像采集高度依赖操作人员,我们需要进行进一步的研究,使用来自多个操作人员的图像。
基于我们在科学数据库(即 Web of Science、IEEE Xplore 数字图书馆、Elsevier ScienceDirect 和 PubMed)中的搜索,这是首次报道的用于 3D TPUS 容积中矢状面的自动分割和生物计量测量系统的工作。与手动 TPUS 分析相比,所提出的算法流程可以提高效率(与手动 15 分钟相比,为 1.27 秒),并且具有高可重复性(高 ICC 值),可用于盆底功能障碍诊断。需要进一步的研究来验证该系统的可行性,使用多个 TPUS 操作人员和多个专家来执行手动分割并从图像中提取生物计量。