Suppr超能文献

基于组织学信息的人类肺部疾病建模工程策略。

Tissue-informed engineering strategies for modeling human pulmonary diseases.

机构信息

Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.

Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2019 Feb 1;316(2):L303-L320. doi: 10.1152/ajplung.00353.2018. Epub 2018 Nov 21.

Abstract

Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.

摘要

慢性肺部疾病,包括特发性肺纤维化(IPF)、肺动脉高压(PH)和慢性阻塞性肺疾病(COPD),在全球范围内导致了惊人的发病率和死亡率,但可供选择的临床治疗方法有限。尽管在阐明这些疾病的细胞和分子途径方面已经取得了巨大进展,但基础研究努力与临床结果之间仍存在显著差距。这种差异部分归因于许多当前疾病模型未能重现体内发病过程中发生的动态变化。因此,肺部医学最近在将工程原理应用于描述体内人类组织的变化以及在体外模拟由此产生的致病改变方面取得了快速发展。我们设想,使用精密生物材料和先进生物制造的工程策略将彻底改变当前的疾病建模方法,并加速个性化治疗的开发和验证。这篇综述强调了肺部组织特征分析如何揭示慢性肺部疾病中细胞外基质的结构、力学和组成的动态变化,以及这些信息如何为更具器官样特征的人类病理学模型的组织信息工程铺平道路。本文还讨论了当前的转化挑战,以及如何通过精密生物材料设计和先进的生物制造技术来克服这些障碍,这些技术体现了个性化医疗的原则,以促进为这一组严重的慢性疾病开发新型治疗方法。

相似文献

1
Tissue-informed engineering strategies for modeling human pulmonary diseases.
Am J Physiol Lung Cell Mol Physiol. 2019 Feb 1;316(2):L303-L320. doi: 10.1152/ajplung.00353.2018. Epub 2018 Nov 21.
2
The extracellular matrix - the under-recognized element in lung disease?
J Pathol. 2016 Dec;240(4):397-409. doi: 10.1002/path.4808. Epub 2016 Oct 28.
4
Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery.
Am J Respir Cell Mol Biol. 2020 Jun;62(6):681-691. doi: 10.1165/rcmb.2019-0276TR.
5
Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema.
Transl Res. 2013 Sep;162(3):156-73. doi: 10.1016/j.trsl.2013.06.004. Epub 2013 Jul 2.
6
Insights gained in the pathology of lung disease through single-cell transcriptomics.
J Pathol. 2022 Jul;257(4):494-500. doi: 10.1002/path.5971. Epub 2022 Jun 17.
7
The Role of miRNAs in Extracellular Matrix Repair and Chronic Fibrotic Lung Diseases.
Cells. 2021 Jul 6;10(7):1706. doi: 10.3390/cells10071706.
8
NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.
PLoS One. 2017 Jan 26;12(1):e0170606. doi: 10.1371/journal.pone.0170606. eCollection 2017.

引用本文的文献

1
The Development of 3D Primary Co-Culture Models of the Human Airway.
Int J Mol Sci. 2025 May 23;26(11):5027. doi: 10.3390/ijms26115027.
2
Emerging biomaterials and bio-nano interfaces in pulmonary hypertension therapy: transformative strategies for personalized treatment.
Front Bioeng Biotechnol. 2025 May 9;13:1567783. doi: 10.3389/fbioe.2025.1567783. eCollection 2025.
3
Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering.
ACS Macro Lett. 2025 Apr 15;14(4):434-447. doi: 10.1021/acsmacrolett.5c00075. Epub 2025 Mar 18.
4
Biomaterial-based 3D human lung models replicate pathological characteristics of early pulmonary fibrosis.
bioRxiv. 2025 Feb 17:2025.02.12.637970. doi: 10.1101/2025.02.12.637970.
5
Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells.
Am J Physiol Lung Cell Mol Physiol. 2025 Mar 1;328(3):L379-L388. doi: 10.1152/ajplung.00419.2024. Epub 2025 Jan 30.
6
Dynamic reporters for probing real-time activation of human fibroblasts from single cells to populations.
APL Bioeng. 2024 Jun 24;8(2):026127. doi: 10.1063/5.0166152. eCollection 2024 Jun.
7
On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI).
Eur J Pharm Sci. 2023 Dec 1;191:106596. doi: 10.1016/j.ejps.2023.106596. Epub 2023 Sep 26.
9
Engineering Dynamic 3D Models of Lung.
Adv Exp Med Biol. 2023;1413:155-189. doi: 10.1007/978-3-031-26625-6_9.
10
Chemical Modification of Human Decellularized Extracellular Matrix for Incorporation into Phototunable Hybrid-Hydrogel Models of Tissue Fibrosis.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15071-15083. doi: 10.1021/acsami.2c18330. Epub 2023 Mar 14.

本文引用的文献

1
Probing fibroblast activation in response to extracellular cues with whole protein- or peptide-functionalized step-growth hydrogels.
ACS Biomater Sci Eng. 2018 Sep 10;4(9):3304-3316. doi: 10.1021/acsbiomaterials.8b00491. Epub 2018 Jul 27.
2
Production and transplantation of bioengineered lung into a large-animal model.
Sci Transl Med. 2018 Aug 1;10(452). doi: 10.1126/scitranslmed.aao3926.
3
Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle.
Acta Biomater. 2018 Jul 1;74:121-130. doi: 10.1016/j.actbio.2018.05.015. Epub 2018 May 16.
4
Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange.
Biomaterials. 2018 Sep;178:496-503. doi: 10.1016/j.biomaterials.2018.03.060. Epub 2018 Apr 4.
5
Matrix remodeling in chronic lung diseases.
Matrix Biol. 2018 Nov;73:52-63. doi: 10.1016/j.matbio.2018.03.012. Epub 2018 Mar 17.
6
Extracellular matrix in lung development, homeostasis and disease.
Matrix Biol. 2018 Nov;73:77-104. doi: 10.1016/j.matbio.2018.03.005. Epub 2018 Mar 8.
8
Aging and anatomical variations in lung tissue stiffness.
Am J Physiol Lung Cell Mol Physiol. 2018 Jun 1;314(6):L946-L955. doi: 10.1152/ajplung.00415.2017. Epub 2018 Feb 22.
9
Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery.
Nat Chem. 2018 Mar;10(3):251-258. doi: 10.1038/nchem.2917. Epub 2018 Jan 15.
10
Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels.
Bioconjug Chem. 2018 Apr 18;29(4):905-913. doi: 10.1021/acs.bioconjchem.7b00802. Epub 2018 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验