Suppr超能文献

相似文献

1
A comprehensive review of computational prediction of genome-wide features.
Brief Bioinform. 2020 Jan 17;21(1):120-134. doi: 10.1093/bib/bby110.
2
3
A survey of recently emerged genome-wide computational enhancer predictor tools.
Comput Biol Chem. 2018 Jun;74:132-141. doi: 10.1016/j.compbiolchem.2018.03.019. Epub 2018 Mar 16.
4
Epigenomic and enhancer dysregulation in uterine leiomyomas.
Hum Reprod Update. 2022 Jun 30;28(4):518-547. doi: 10.1093/humupd/dmac008.
8
Using epigenomics data to predict gene expression in lung cancer.
BMC Bioinformatics. 2015;16 Suppl 5(Suppl 5):S10. doi: 10.1186/1471-2105-16-S5-S10. Epub 2015 Mar 18.
10
Enhancer prediction in the human genome by probabilistic modelling of the chromatin feature patterns.
BMC Bioinformatics. 2020 Jul 20;21(1):317. doi: 10.1186/s12859-020-03621-3.

引用本文的文献

4
Predicting Genome Architecture: Challenges and Solutions.
Front Genet. 2021 Jan 22;11:617202. doi: 10.3389/fgene.2020.617202. eCollection 2020.
5
Integrative Methods and Practical Challenges for Single-Cell Multi-omics.
Trends Biotechnol. 2020 Sep;38(9):1007-1022. doi: 10.1016/j.tibtech.2020.02.013. Epub 2020 Mar 26.
6
Prediction of RNA Methylation Status From Gene Expression Data Using Classification and Regression Methods.
Evol Bioinform Online. 2020 Jul 20;16:1176934320915707. doi: 10.1177/1176934320915707. eCollection 2020.
7
A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression.
Front Bioeng Biotechnol. 2020 Feb 6;8:40. doi: 10.3389/fbioe.2020.00040. eCollection 2020.
8
Quantitative prediction of enhancer-promoter interactions.
Genome Res. 2020 Jan;30(1):72-84. doi: 10.1101/gr.249367.119. Epub 2019 Dec 2.
9
Predict Epitranscriptome Targets and Regulatory Functions of -Methyladenosine (mA) Writers and Erasers.
Evol Bioinform Online. 2019 Sep 5;15:1176934319871290. doi: 10.1177/1176934319871290. eCollection 2019.
10
Ensemble of decision tree reveals potential miRNA-disease associations.
PLoS Comput Biol. 2019 Jul 22;15(7):e1007209. doi: 10.1371/journal.pcbi.1007209. eCollection 2019 Jul.

本文引用的文献

5
Prediction of Chromatin Accessibility in Gene-Regulatory Regions from Transcriptomics Data.
Sci Rep. 2017 Jul 5;7(1):4660. doi: 10.1038/s41598-017-04929-6.
6
DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
Bioinformatics. 2017 Oct 1;33(19):3003-3010. doi: 10.1093/bioinformatics/btx336.
7
DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning.
Genome Biol. 2017 Apr 11;18(1):67. doi: 10.1186/s13059-017-1189-z.
8
Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility.
Nucleic Acids Res. 2017 May 5;45(8):4315-4329. doi: 10.1093/nar/gkx174.
9
Predicting the impact of non-coding variants on DNA methylation.
Nucleic Acids Res. 2017 Jun 20;45(11):e99. doi: 10.1093/nar/gkx177.
10
Improved regulatory element prediction based on tissue-specific local epigenomic signatures.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):E1633-E1640. doi: 10.1073/pnas.1618353114. Epub 2017 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验