Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States.
ACS Appl Mater Interfaces. 2018 Dec 19;10(50):43691-43698. doi: 10.1021/acsami.8b16531. Epub 2018 Dec 5.
Transparent, conductive coatings on porous, three-dimensional materials are often used as the current collector for photoelectrode designs in photoelectrochemical applications. These structures allow for improved light trapping and absorption in chemically synthesized, photoactive overlayers while minimizing parasitic absorption in the current collecting layer. Atomic layer deposition (ALD) is particularly useful for fabricating transparent conducting oxides (TCOs) like Sn-doped InO (ITO) and Al-doped ZnO (AZO) for structured materials because the deposition is specific to exposed surfaces. Unlike line-of-sight deposition methods (evaporation, spray pyrolysis, sputtering), ALD can access the entire complex interface to make a conformal transparent conductive layer. While ITO and AZO can be grown by ALD, they are intrinsically soluble in the acidic and basic environments common for electrochemical applications like water splitting. To take advantage of the unique characteristics of ALD in these applications, it is important to develop strategies for fabricating TCO layers with enhanced chemical stability. Ultrathin coatings of stable materials can be used to protect otherwise unstable electrochemical interfaces while maintaining the desired function. Here, we describe experiments to characterize the chemical and electrochemical stability of ALD-deposited AZO TCO thin films protected by a 10 nm TiO overlayer. The addition of a TiO protection layer is demonstrated to improve the chemical stability of AZO by orders of magnitude compared to unprotected, yet otherwise identically prepared, AZO films. The electrochemical stability is enhanced accordingly in both acidic and basic environments. We demonstrate that TiO-protected AZO can be used as a TCO for both the cathodic hydrogen evolution (HER) and anodic water oxidation (OER) half-reactions of electrochemical water splitting in base and for HER in acid when the appropriate electrocatalysts are added. As a result, we show that ALD can be used to synthesize a chemically stable TCO heterostructure, expanding the range of materials and electrochemical environments available for building complex photoelectrode architectures.
多孔三维材料上的透明导电涂层通常用作光电化学应用中光电阳极设计的集流器。这些结构允许在化学合成的光活性覆盖层中更好地捕获和吸收光,同时最小化集流器层中的寄生吸收。原子层沉积(ALD)特别适用于制造用于结构化材料的透明导电氧化物(TCO),如掺锡氧化铟(ITO)和掺铝氧化锌(AZO),因为沉积是针对暴露表面的。与视线沉积方法(蒸发、喷雾热解、溅射)不同,ALD 可以进入整个复杂界面,形成一个共形的透明导电层。虽然 ITO 和 AZO 可以通过 ALD 生长,但它们在用于水分解等电化学应用的酸性和碱性环境中本质上是可溶的。为了在这些应用中利用 ALD 的独特特性,开发具有增强化学稳定性的 TCO 层的策略非常重要。稳定材料的超薄涂层可用于保护不稳定的电化学界面,同时保持所需的功能。在这里,我们描述了用于表征由 10nm TiO 覆盖层保护的 ALD 沉积 AZO TCO 薄膜的化学和电化学稳定性的实验。与未保护但以其他方式相同制备的 AZO 薄膜相比,添加 TiO 保护层可使 AZO 的化学稳定性提高几个数量级。在酸性和碱性环境中,电化学稳定性也相应提高。我们证明,TiO 保护的 AZO 可以用作电化学水分解基础中碱性 HER 和阳极水氧化(OER)半反应以及酸性中 HER 的 TCO,当添加适当的电催化剂时。因此,我们表明 ALD 可用于合成化学稳定的 TCO 异质结构,扩大了可用于构建复杂光电阳极结构的材料和电化学环境的范围。