Cordova Isvar A, Peng Qing, Ferrall Isa L, Rieth Adam J, Hoertz Paul G, Glass Jeffrey T
Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA.
Nanoscale. 2015 May 14;7(18):8584-92. doi: 10.1039/c4nr07377k.
TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm(-2) at 0 V vs. Ag/AgCl under 100 mW cm(-2) AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.
由于其功能性、在腐蚀性环境中的长期稳定性、无毒以及低成本,二氧化钛是用于光电化学(PEC)水分解电极的一种典型半导体阳极材料。在本研究中,通过将二氧化钛原子层沉积(ALD)到通过溶液处理制备的多孔、透明且导电的氟掺杂氧化锡纳米颗粒(nanoFTO)支架上,合成了具有增强光电流密度的二氧化钛光阳极。nanoFTO纳米结构的简单性和无序性质与超薄共形ALD二氧化钛涂层相结合,具有多种优势,包括使电荷载流子扩散长度与光穿透深度解耦、通过散射增加光子吸收概率、互补光子吸收以及为电荷在各个结处的分离和转移提供有利界面。我们研究了nanoFTO支架的孔隙率和二氧化钛涂层厚度对PEC性能的影响,并在1 M KOH水溶液电解质中,于100 mW cm(-2) AM 1.5 G光照下,相对于Ag/AgCl在0 V时实现了0.7 mA cm(-2)的最佳光电流。此外,通过循环伏安法、入射光子到电流效率、瞬态光电流光谱和电化学阻抗光谱对性能改善背后的基本机制进行了表征,并与单晶金红石二氧化钛纳米线的机制进行了对比。这项工作中采用的策略突出了这类异质纳米结构所固有的机遇,其中所获得的经验教训可应用于提高其他有前景的半导体(如赤铁矿(α-Fe2O3))以及其他对可见光更敏感材料的PEC转换效率。