Suppr超能文献

基于表位的功能抗体的计算设计。

Computational Design of Epitope-Specific Functional Antibodies.

机构信息

Biolojic Design, Ltd., 12 Hamada Street, Rehovot 7670314, Israel.

Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK.

出版信息

Cell Rep. 2018 Nov 20;25(8):2121-2131.e5. doi: 10.1016/j.celrep.2018.10.081.

Abstract

The ultimate goal of protein design is to introduce new biological activity. We propose a computational approach for designing functional antibodies by focusing on functional epitopes, integrating large-scale statistical analysis with multiple structural models. Machine learning is used to analyze these models and predict specific residue-residue contacts. We use this approach to design a functional antibody to counter the proinflammatory effect of the cytokine interleukin-17A (IL-17A). X-ray crystallography confirms that the designed antibody binds the targeted epitope and the interaction is mediated by the designed contacts. Cell-based assays confirm that the antibody is functional. Importantly, this approach does not rely on a high-quality 3D model of the designed complex or even a solved structure of the target. As demonstrated here, this approach can be used to design biologically active antibodies, removing some of the main hurdles in antibody design and in drug discovery.

摘要

蛋白质设计的最终目标是引入新的生物活性。我们提出了一种通过关注功能表位来设计功能性抗体的计算方法,将大规模的统计分析与多种结构模型相结合。机器学习被用于分析这些模型并预测特定的残基-残基接触。我们使用这种方法设计了一种功能性抗体来对抗细胞因子白细胞介素-17A(IL-17A)的促炎作用。X 射线晶体学证实设计的抗体结合了靶向表位,并且相互作用是由设计的接触介导的。基于细胞的测定证实了该抗体具有功能。重要的是,这种方法不依赖于设计复合物的高质量 3D 模型,甚至不依赖于目标的已解决结构。如这里所示,这种方法可用于设计具有生物活性的抗体,消除了抗体设计和药物发现中的一些主要障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验