Suppr超能文献

肿瘤学的变革:人工智能(AI)作为抗体设计与优化工具的作用。

Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools.

作者信息

Dewaker Varun, Morya Vivek Kumar, Kim Yoo Hee, Park Sung Taek, Kim Hyeong Su, Koh Young Ho

机构信息

Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea.

Department of Orthopedic Surgery, Hallym University Dongtan Sacred Hospital, Hwaseong-Si, 18450, Republic of Korea.

出版信息

Biomark Res. 2025 Mar 29;13(1):52. doi: 10.1186/s40364-025-00764-4.

Abstract

Antibodies play a crucial role in defending the human body against diseases, including life-threatening conditions like cancer. They mediate immune responses against foreign antigens and, in some cases, self-antigens. Over time, antibody-based technologies have evolved from monoclonal antibodies (mAbs) to chimeric antigen receptor T cells (CAR-T cells), significantly impacting biotechnology, diagnostics, and therapeutics. Although these advancements have enhanced therapeutic interventions, the integration of artificial intelligence (AI) is revolutionizing antibody design and optimization. This review explores recent AI advancements, including large language models (LLMs), diffusion models, and generative AI-based applications, which have transformed antibody discovery by accelerating de novo generation, enhancing immune response precision, and optimizing therapeutic efficacy. Through advanced data analysis, AI enables the prediction and design of antibody sequences, 3D structures, complementarity-determining regions (CDRs), paratopes, epitopes, and antigen-antibody interactions. These AI-powered innovations address longstanding challenges in antibody development, significantly improving speed, specificity, and accuracy in therapeutic design. By integrating computational advancements with biomedical applications, AI is driving next-generation cancer therapies, transforming precision medicine, and enhancing patient outcomes.

摘要

抗体在保护人体抵御疾病(包括癌症等危及生命的病症)方面发挥着关键作用。它们介导针对外来抗原以及某些情况下自身抗原的免疫反应。随着时间的推移,基于抗体的技术已从单克隆抗体(mAb)发展到嵌合抗原受体T细胞(CAR-T细胞),对生物技术、诊断学和治疗学产生了重大影响。尽管这些进展增强了治疗干预手段,但人工智能(AI)的融入正在彻底改变抗体的设计与优化。本综述探讨了AI的最新进展,包括大语言模型(LLM)、扩散模型以及基于生成式AI的应用,这些进展通过加速从头生成、提高免疫反应精度和优化治疗效果,改变了抗体发现的方式。通过先进的数据分析,AI能够预测和设计抗体序列、三维结构、互补决定区(CDR)、抗原结合位、表位以及抗原-抗体相互作用。这些由AI驱动的创新解决了抗体开发中长期存在的挑战,显著提高了治疗设计的速度、特异性和准确性。通过将计算进展与生物医学应用相结合,AI正在推动下一代癌症治疗,变革精准医学,并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e14/11954232/d9b3204fca3c/40364_2025_764_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验