Institute of Hematology and Center for Hemato-Oncology Research, University of Perugia and Santa Maria della Misericordia Hospital, 06132 Perugia, Italy.
Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.
Int J Mol Sci. 2024 Jun 30;25(13):7231. doi: 10.3390/ijms25137231.
Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.
嵌合抗原受体 (CAR) T 细胞代表了一种革命性的免疫疗法,它允许通过源自单克隆抗体 (mAb) 的独特单链片段可变区 (scFv) 进行特定的肿瘤识别。因此,scFv 的选择是 CAR 构建的一个基本步骤,以确保针对肿瘤抗原结合的准确有效的 CAR 信号传导。然而,传统的体外和体内生物学方法来比较不同的 scFv 衍生的 CAR 既昂贵又费时费力。为了在 CAR-T 细胞工程之前预测最佳的 scFv 结合,我们对不同的抗-CD30 mAb 克隆进行了人工智能 (AI) 引导的分子对接和导向分子动力学分析。虚拟计算 scFv 筛选在结合能力和抗肿瘤功效方面,与表面等离子体共振 (SPR) 和体外及体内功能性 CAR-T 细胞测定分别具有可比的结果。该方法具有快速、低成本的优势,有潜力推进新型 CAR 构建体的发展,在减少时间、成本和对实验动物使用的需求方面具有重大影响。