Suppr超能文献

载脂蛋白 AI 相关脂蛋白蛋白质组面板的开发和验证用于预测胆固醇流出能力和冠心病。

Development and Validation of Apolipoprotein AI-Associated Lipoprotein Proteome Panel for the Prediction of Cholesterol Efflux Capacity and Coronary Artery Disease.

机构信息

Cleveland HeartLab, Inc., Cleveland, OH.

Proof Centre of Excellence, Vancouver, British Columbia, Canada.

出版信息

Clin Chem. 2019 Feb;65(2):282-290. doi: 10.1373/clinchem.2018.291922. Epub 2018 Nov 21.

Abstract

BACKGROUND

Cholesterol efflux capacity (CEC) is a measure of HDL function that, in cell-based studies, has demonstrated an inverse association with cardiovascular disease. The cell-based measure of CEC is complex and low-throughput. We hypothesized that assessment of the lipoprotein proteome would allow for precise, high-throughput CEC prediction.

METHODS

After isolating lipoprotein particles from serum, we used LC-MS/MS to quantify 21 lipoprotein-associated proteins. A bioinformatic pipeline was used to identify proteins with univariate correlation to cell-based CEC measurements and generate a multivariate algorithm for CEC prediction (pCE). Using logistic regression, protein coefficients in the pCE model were reweighted to yield a new algorithm predicting coronary artery disease (pCAD).

RESULTS

Discovery using targeted LC-MS/MS analysis of 105 training and test samples yielded a pCE model comprising 5 proteins (Spearman = 0.86). Evaluation of pCE in a case-control study of 231 specimens from healthy individuals and patients with coronary artery disease revealed lower pCE in cases ( = 0.03). Derived within this same study, the pCAD model significantly improved classification ( < 0.0001). Following analytical validation of the multiplexed proteomic method, we conducted a case-control study of myocardial infarction in 137 postmenopausal women that confirmed significant separation of specimen cohorts in both the pCE ( = 0.015) and pCAD ( = 0.001) models.

CONCLUSIONS

Development of a proteomic pCE provides a reproducible high-throughput alternative to traditional cell-based CEC assays. The pCAD model improves stratification of case and control cohorts and, with further studies to establish clinical validity, presents a new opportunity for the assessment of cardiovascular health.

摘要

背景

胆固醇外排能力(CEC)是衡量高密度脂蛋白(HDL)功能的一项指标,在细胞基础研究中,其与心血管疾病呈负相关。细胞基础的 CEC 测量方法复杂且通量低。我们假设评估脂蛋白蛋白质组可以实现精确、高通量的 CEC 预测。

方法

从血清中分离脂蛋白颗粒后,我们使用 LC-MS/MS 定量了 21 种脂蛋白相关蛋白。使用生物信息学管道识别与细胞基础 CEC 测量具有单变量相关性的蛋白质,并生成用于 CEC 预测的多元算法(pCE)。使用逻辑回归,重新加权 pCE 模型中的蛋白质系数,以生成预测冠心病(pCAD)的新算法。

结果

使用靶向 LC-MS/MS 分析 105 个训练和测试样本进行发现,得到了一个由 5 种蛋白质组成的 pCE 模型(Spearman = 0.86)。在一项包含 231 个健康个体和冠心病患者样本的病例对照研究中评估 pCE,发现病例组的 pCE 较低( = 0.03)。在同一研究中得出的 pCAD 模型显著改善了分类( < 0.0001)。在对该多指标蛋白质组学方法进行分析验证后,我们对 137 名绝经后妇女的心肌梗死进行了病例对照研究,证实了 pCE( = 0.015)和 pCAD( = 0.001)模型中样本队列的显著分离。

结论

开发蛋白质组学 pCE 提供了一种可重复的高通量替代传统细胞基础 CEC 测定的方法。pCAD 模型改善了病例和对照组的分层,如果进一步研究证实其临床有效性,将为评估心血管健康提供新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验