Cleveland HeartLab, Inc., Cleveland, OH.
Proof Centre of Excellence, Vancouver, British Columbia, Canada.
Clin Chem. 2019 Feb;65(2):282-290. doi: 10.1373/clinchem.2018.291922. Epub 2018 Nov 21.
Cholesterol efflux capacity (CEC) is a measure of HDL function that, in cell-based studies, has demonstrated an inverse association with cardiovascular disease. The cell-based measure of CEC is complex and low-throughput. We hypothesized that assessment of the lipoprotein proteome would allow for precise, high-throughput CEC prediction.
After isolating lipoprotein particles from serum, we used LC-MS/MS to quantify 21 lipoprotein-associated proteins. A bioinformatic pipeline was used to identify proteins with univariate correlation to cell-based CEC measurements and generate a multivariate algorithm for CEC prediction (pCE). Using logistic regression, protein coefficients in the pCE model were reweighted to yield a new algorithm predicting coronary artery disease (pCAD).
Discovery using targeted LC-MS/MS analysis of 105 training and test samples yielded a pCE model comprising 5 proteins (Spearman = 0.86). Evaluation of pCE in a case-control study of 231 specimens from healthy individuals and patients with coronary artery disease revealed lower pCE in cases ( = 0.03). Derived within this same study, the pCAD model significantly improved classification ( < 0.0001). Following analytical validation of the multiplexed proteomic method, we conducted a case-control study of myocardial infarction in 137 postmenopausal women that confirmed significant separation of specimen cohorts in both the pCE ( = 0.015) and pCAD ( = 0.001) models.
Development of a proteomic pCE provides a reproducible high-throughput alternative to traditional cell-based CEC assays. The pCAD model improves stratification of case and control cohorts and, with further studies to establish clinical validity, presents a new opportunity for the assessment of cardiovascular health.
胆固醇外排能力(CEC)是衡量高密度脂蛋白(HDL)功能的一项指标,在细胞基础研究中,其与心血管疾病呈负相关。细胞基础的 CEC 测量方法复杂且通量低。我们假设评估脂蛋白蛋白质组可以实现精确、高通量的 CEC 预测。
从血清中分离脂蛋白颗粒后,我们使用 LC-MS/MS 定量了 21 种脂蛋白相关蛋白。使用生物信息学管道识别与细胞基础 CEC 测量具有单变量相关性的蛋白质,并生成用于 CEC 预测的多元算法(pCE)。使用逻辑回归,重新加权 pCE 模型中的蛋白质系数,以生成预测冠心病(pCAD)的新算法。
使用靶向 LC-MS/MS 分析 105 个训练和测试样本进行发现,得到了一个由 5 种蛋白质组成的 pCE 模型(Spearman = 0.86)。在一项包含 231 个健康个体和冠心病患者样本的病例对照研究中评估 pCE,发现病例组的 pCE 较低( = 0.03)。在同一研究中得出的 pCAD 模型显著改善了分类( < 0.0001)。在对该多指标蛋白质组学方法进行分析验证后,我们对 137 名绝经后妇女的心肌梗死进行了病例对照研究,证实了 pCE( = 0.015)和 pCAD( = 0.001)模型中样本队列的显著分离。
开发蛋白质组学 pCE 提供了一种可重复的高通量替代传统细胞基础 CEC 测定的方法。pCAD 模型改善了病例和对照组的分层,如果进一步研究证实其临床有效性,将为评估心血管健康提供新的机会。