文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

阿莫西林-克拉维酸治疗后行自体粪菌移植对粪便微生物组结构和代谢潜能的影响。

Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential.

机构信息

The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA.

Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA.

出版信息

mSphere. 2018 Nov 21;3(6):e00588-18. doi: 10.1128/mSphereDirect.00588-18.


DOI:10.1128/mSphereDirect.00588-18
PMID:30463925
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6249645/
Abstract

Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants ( = 10,  < 0.01); however, only three participants exhibited major changes at the phylum level following exposure. In the cohort as a whole, beta-lactamase genes were enriched following Amox-Clav ( < 0.05), and predicted metabolic capacity was significantly altered ( < 0.01). Species composition, metabolic capacity, and beta-lactamase abundance returned to pre-antimicrobial exposure state 7 days after either autoFMT or saline enema ( > 0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.) The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated.

摘要

预防耐多药生物体(MDRO)感染的策略很少,但自体粪便微生物群移植(autoFMT)可能限制胃肠道 MDRO 的扩张。autoFMT 涉及在健康状态下储存自己的粪便,以备在肠道微生物群受到干扰后用于恢复。这项初步研究评估了暴露于阿莫西林-克拉维酸(Amox-Clav)和 autoFMT 对胃肠道微生物组分类组成、耐药基因含量和代谢能力的影响。

共有 10 名健康参与者入组。所有参与者均接受 5 天的 Amox-Clav 治疗。一半参与者随机接受来自于抗菌暴露前采集的粪便的 autoFMT,通过灌肠进行,另一半接受生理盐水灌肠。参与者在接受 Amox-Clav 和灌肠前以及 90 天的随访期间提交粪便样本。 shotgun 宏基因组测序揭示了分类组成、耐药基因含量和代谢能力。Amox-Clav 显著改变了所有参与者的肠道分类组成(=10,<0.01);然而,只有三名参与者在暴露后出现了门水平的主要变化。在整个队列中,β-内酰胺酶基因在 Amox-Clav 后富集(<0.05),预测的代谢能力也发生了显著改变(<0.01)。在接受 autoFMT 或生理盐水灌肠后 7 天,物种组成、代谢能力和β-内酰胺酶丰度均恢复到抗菌暴露前的状态(>0.05,与入组时相比)。即使在没有明显分类紊乱的参与者中,抗菌药物暴露后微生物代谢能力也发生了改变,这可能为病原体定植创造了开放的生态位。

我们的研究结果表明,代谢能力是评估抗菌药物对微生物组影响的一个重要考虑因素。autoFMT 耐受性良好,可能有助于恢复系统发育。(本研究已在 ClinicalTrials.gov 注册,标识符为 NCT02046525。)耐药生物体在病原体中的传播威胁着抗菌治疗方案的疗效。人类肠道是许多耐药生物体及其耐药基因的储存库,抗菌药物暴露会破坏肠道微生物群,从而为耐药病原体开辟代谢生态位。一旦在肠道中建立,即使在停止使用抗菌药物后,抗药性细菌也能持续存在。预防耐多药生物体(MDRO)感染的策略很少,但自体粪便微生物群移植(autoFMT)可能限制胃肠道 MDRO 的扩张。autoFMT 涉及在健康状态下储存自己的粪便,以备在肠道微生物群受到干扰后用于恢复。

这项初步研究评估了阿莫西林-克拉维酸(Amox-Clav)暴露和 autoFMT 对胃肠道微生物组分类组成、耐药基因含量和代谢能力的影响。重要的是,我们发现即使在宏观进化没有明显改变的情况下,代谢能力也受到了干扰,而且 autoFMT 是安全且耐受良好的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/b63a34285459/sph0061827030005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/9a708fbfe2b8/sph0061827030001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/2cb1dfb6edfa/sph0061827030002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/ea101f2f3bdd/sph0061827030003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/f0b6b0191c73/sph0061827030004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/b63a34285459/sph0061827030005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/9a708fbfe2b8/sph0061827030001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/2cb1dfb6edfa/sph0061827030002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/ea101f2f3bdd/sph0061827030003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/f0b6b0191c73/sph0061827030004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b420/6249645/b63a34285459/sph0061827030005.jpg

相似文献

[1]
Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential.

mSphere. 2018-11-21

[2]
Microbiota restoration reduces antibiotic-resistant bacteria gut colonization in patients with recurrent Clostridioides difficile infection from the open-label PUNCH CD study.

Genome Med. 2021-2-16

[3]
One dose ceftriaxone vs. ten days of amoxicillin/clavulanate therapy for acute otitis media: clinical efficacy and change in nasopharyngeal flora.

Pediatr Infect Dis J. 1999-5

[4]
Efficacy and safety of cefdinir in the treatment of maxillary sinusitis.

Eur Arch Otorhinolaryngol. 2000

[5]
Treatment of symptomatic chronic adenotonsillar hypertrophy with amoxicillin/clavulanate potassium: short- and long-term results.

Pediatrics. 1998-4

[6]
Gut microbiome perturbation, antibiotic resistance, and Escherichia coli strain dynamics associated with international travel: a metagenomic analysis.

Lancet Microbe. 2023-10

[7]
Fecal Microbiota Transplant in Cirrhosis Reduces Gut Microbial Antibiotic Resistance Genes: Analysis of Two Trials.

Hepatol Commun. 2021-2

[8]
Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host.

Microbiome. 2019-8-2

[9]
Impact of investigational microbiota therapeutic RBX2660 on the gut microbiome and resistome revealed by a placebo-controlled clinical trial.

Microbiome. 2020-8-31

[10]
Differential response to prolonged amoxicillin treatment: long-term resilience of the microbiome versus long-lasting perturbations in the gut resistome.

Gut Microbes. 2023

引用本文的文献

[1]
Safety and tolerability of frozen, capsulized autologous faecal microbiota transplantation. A randomized double blinded phase I clinical trial.

PLoS One. 2023

[2]
Interactions between and the resident microbiota.

Front Microbiol. 2022-9-20

[3]
Related Factor Analysis and Nursing Strategies of Diarrhea in Critically Ill Patients with Enteral Nutrition.

Emerg Med Int. 2022-9-21

[4]
Pilot study of autologous fecal microbiota transplants in nursing home residents: Feasibility and safety.

Contemp Clin Trials Commun. 2022-3-7

[5]
Do Probiotics During In-Hospital Antibiotic Treatment Prevent Colonization of Gut Microbiota With Multi-Drug-Resistant Bacteria? A Randomized Placebo-Controlled Trial Comparing to a Mixture of , and .

Front Public Health. 2020

[6]
Understanding the impact of antibiotic perturbation on the human microbiome.

Genome Med. 2020-9-28

[7]
Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease.

Transl Res. 2020-12

[8]
SYN-007, an Orally Administered Beta-Lactamase Enzyme, Protects the Gut Microbiome from Oral Amoxicillin/Clavulanate without Adversely Affecting Antibiotic Systemic Absorption in Dogs.

Microorganisms. 2020-1-22

[9]
Machine learning analysis to identify the association between risk factors and onset of nosocomial diarrhea: a retrospective cohort study.

PeerJ. 2019-10-30

[10]
Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome.

Front Immunol. 2019-6-14

本文引用的文献

[1]
Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection.

Anaerobe. 2018-10

[2]
Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent Clostridium difficile infection and/or ulcerative colitis.

PLoS One. 2018-1-31

[3]
16S rDNA analysis of the effect of fecal microbiota transplantation on pulmonary and intestinal flora.

3 Biotech. 2017-12

[4]
Fecal Microbiota Transplantation and Urinary Tract Infection: An Interesting Approach.

Clin Infect Dis. 2018-1-18

[5]
Antimicrobial Resistance Gene Acquisition and Depletion Following Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection.

Clin Infect Dis. 2018-1-18

[6]
Shotgun metagenomics, from sampling to analysis.

Nat Biotechnol. 2017-9-12

[7]
Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection.

Aliment Pharmacol Ther. 2017-9

[8]
Plasticity, dynamics, and inhibition of emerging tetracycline resistance enzymes.

Nat Chem Biol. 2017-7

[9]
Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses.

PLoS One. 2017-4-27

[10]
From Culture to High-Throughput Sequencing and Beyond: A Layperson's Guide to the "Omics" and Diagnostic Potential of the Microbiome.

Gastroenterol Clin North Am. 2017-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索