Physiological Chemistry, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany.
Institut National de la Recherche Agronomique, UR1037 Fish Physiology and Genomics, F-35000 Rennes, France.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12781-12786. doi: 10.1073/pnas.1803826115. Epub 2018 Nov 21.
Evolutionary novelties require rewiring of transcriptional networks and/or the evolution of new gene functions. Sex determination (SD), one of the most plastic evolutionary processes, requires such novelties. Studies on the evolution of vertebrate SD revealed that new master SD genes are generally recruited from genes involved in the downstream SD regulatory genetic network. Only a single exception to this rule is currently known in vertebrates: the intriguing case of the salmonid master SD gene (), which arose from duplication of an immune-related gene. This exception immediately posed the question of how a gene outside from the classical sex differentiation cascade could acquire its function as a male SD gene. Here we show that SdY became integrated in the classical vertebrate sex differentiation cascade by interacting with the Forkhead box domain of the female-determining transcription factor, Foxl2. In the presence of Foxl2, SdY is translocated to the nucleus where the SdY:Foxl2 complex prevents activation of the aromatase () promoter in cooperation with Nr5a1 (Sf1). Hence, by blocking a positive loop of regulation needed for the synthesis of estrogens in the early differentiating gonad, SdY disrupts a preset female differentiation pathway, consequently allowing testicular differentiation to proceed. These results also suggest that the evolution of unusual vertebrate master sex determination genes recruited from outside the classical pathway like is strongly constrained by their ability to interact with the canonical gonadal differentiation pathway.
进化的新颖性需要重新布线转录网络和/或新基因功能的进化。性别决定 (SD) 是最具可塑性的进化过程之一,需要这种新颖性。对脊椎动物 SD 进化的研究表明,新的主 SD 基因通常是从参与下游 SD 调节遗传网络的基因中招募而来的。目前在脊椎动物中仅知道这一规则的一个例外:令人好奇的鲑鱼主 SD 基因 () 的情况,它是由与免疫相关的基因重复产生的。这个例外立即提出了一个问题,即一个不在经典性别分化级联之外的基因如何获得作为雄性 SD 基因的功能。在这里,我们表明 SdY 通过与雌性决定转录因子 Foxl2 的 Forkhead 盒结构域相互作用,整合到经典的脊椎动物性别分化级联中。在 Foxl2 存在的情况下,SdY 被转运到细胞核中,在那里 SdY:Foxl2 复合物与 Nr5a1 (Sf1) 合作阻止芳香酶 () 启动子的激活。因此,通过阻断早期分化性腺中雌激素合成所需的正调控循环,SdY 破坏了预设的雌性分化途径,从而允许睾丸分化继续进行。这些结果还表明,像 这样从经典途径之外招募的不寻常的脊椎动物主性别决定基因的进化受到其与经典性腺分化途径相互作用能力的强烈限制。