Suppr超能文献

GANimation:基于单张图像的解剖学感知面部动画

GANimation: Anatomically-aware Facial Animation from a Single Image.

作者信息

Pumarola Albert, Agudo Antonio, Martinez Aleix M, Sanfeliu Alberto, Moreno-Noguer Francesc

机构信息

Institut de Robòtica i Informàtica Industrial, CSIC-UPC, 08028, Barcelona, Spain.

The Ohio State University, Columbus, OH 43210, USA.

出版信息

Comput Vis ECCV. 2018 Sep;11214:835-851. doi: 10.1007/978-3-030-01249-6_50. Epub 2018 Oct 6.

Abstract

Recent advances in Generative Adversarial Networks (GANs) have shown impressive results for task of facial expression synthesis. The most successful architecture is StarGAN [4], that conditions GANs' generation process with images of a specific domain, namely a set of images of persons sharing the same expression. While effective, this approach can only generate a discrete number of expressions, determined by the content of the dataset. To address this limitation, in this paper, we introduce a novel GAN conditioning scheme based on Action Units (AU) annotations, which describes in a continuous manifold the anatomical facial movements defining a human expression. Our approach allows controlling the magnitude of activation of each AU and combine several of them. Additionally, we propose a fully unsupervised strategy to train the model, that only requires images annotated with their activated AUs, and exploit attention mechanisms that make our network robust to changing backgrounds and lighting conditions. Extensive evaluation show that our approach goes beyond competing conditional generators both in the capability to synthesize a much wider range of expressions ruled by anatomically feasible muscle movements, as in the capacity of dealing with images in the wild.

摘要

生成对抗网络(GAN)的最新进展在面部表情合成任务中取得了令人瞩目的成果。最成功的架构是StarGAN [4],它通过特定领域的图像(即一组具有相同表情的人物图像)来调节GAN的生成过程。虽然这种方法有效,但它只能生成由数据集内容决定的离散数量的表情。为了解决这一局限性,在本文中,我们引入了一种基于动作单元(AU)注释的新型GAN调节方案,该方案在连续流形中描述了定义人类表情的解剖学面部运动。我们的方法允许控制每个AU的激活幅度并将其中几个结合起来。此外,我们提出了一种完全无监督的策略来训练模型,该策略仅需要用激活的AU进行注释的图像,并利用注意力机制使我们的网络对变化的背景和光照条件具有鲁棒性。广泛的评估表明,我们的方法在合成由解剖学上可行的肌肉运动所支配的更广泛表情的能力方面,以及在处理自然图像的能力方面,都超越了竞争的条件生成器。

相似文献

1
GANimation: Anatomically-aware Facial Animation from a Single Image.
Comput Vis ECCV. 2018 Sep;11214:835-851. doi: 10.1007/978-3-030-01249-6_50. Epub 2018 Oct 6.
2
Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1254-1266. doi: 10.1109/TPAMI.2019.2950198. Epub 2021 Mar 5.
3
F³A-GAN: Facial Flow for Face Animation With Generative Adversarial Networks.
IEEE Trans Image Process. 2021;30:8658-8670. doi: 10.1109/TIP.2021.3112059. Epub 2021 Oct 21.
4
Dynamic Facial Expression Generation on Hilbert Hypersphere With Conditional Wasserstein Generative Adversarial Nets.
IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):848-863. doi: 10.1109/TPAMI.2020.3002500. Epub 2022 Jan 7.
5
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1947-1962. doi: 10.1109/TPAMI.2018.2856256. Epub 2018 Jul 16.
6
SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains.
Neural Netw. 2023 May;162:330-339. doi: 10.1016/j.neunet.2023.02.042. Epub 2023 Mar 7.
7
Weakly Supervised Facial Action Unit Recognition With Domain Knowledge.
IEEE Trans Cybern. 2018 Nov;48(11):3265-3276. doi: 10.1109/TCYB.2018.2868194. Epub 2018 Sep 26.
8
GD-StarGAN: Multi-domain image-to-image translation in garment design.
PLoS One. 2020 Apr 21;15(4):e0231719. doi: 10.1371/journal.pone.0231719. eCollection 2020.
9
Extracting Semantic Knowledge From GANs With Unsupervised Learning.
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9654-9668. doi: 10.1109/TPAMI.2023.3262140. Epub 2023 Jun 30.
10
CariGAN: Caricature generation through weakly paired adversarial learning.
Neural Netw. 2020 Dec;132:66-74. doi: 10.1016/j.neunet.2020.08.011. Epub 2020 Aug 20.

引用本文的文献

1
Development of an Interactive Digital Human with Context-Sensitive Facial Expressions.
Sensors (Basel). 2025 Aug 18;25(16):5117. doi: 10.3390/s25165117.
4
Facial expression morphing: enhancing visual fidelity and preserving facial details in CycleGAN-based expression synthesis.
PeerJ Comput Sci. 2024 Oct 25;10:e2438. doi: 10.7717/peerj-cs.2438. eCollection 2024.
6
A Chinese Face Dataset with Dynamic Expressions and Diverse Ages Synthesized by Deep Learning.
Sci Data. 2023 Dec 7;10(1):878. doi: 10.1038/s41597-023-02701-2.
8
Advancing Naturalistic Affective Science with Deep Learning.
Affect Sci. 2023 Aug 25;4(3):550-562. doi: 10.1007/s42761-023-00215-z. eCollection 2023 Sep.
9
Combining GAN with reverse correlation to construct personalized facial expressions.
PLoS One. 2023 Aug 25;18(8):e0290612. doi: 10.1371/journal.pone.0290612. eCollection 2023.
10
Domain-Scalable Unpaired Image Translation via Latent Space Anchoring.
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11707-11719. doi: 10.1109/TPAMI.2023.3287774. Epub 2023 Sep 5.

本文引用的文献

1
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2019 Aug;41(8):1947-1962. doi: 10.1109/TPAMI.2018.2856256. Epub 2018 Jul 16.
2
Compound facial expressions of emotion.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):E1454-62. doi: 10.1073/pnas.1322355111. Epub 2014 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验