Suppr超能文献

利用深度学习推动自然主义情感科学发展。

Advancing Naturalistic Affective Science with Deep Learning.

作者信息

Lin Chujun, Bulls Landry S, Tepfer Lindsey J, Vyas Amisha D, Thornton Mark A

机构信息

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA.

出版信息

Affect Sci. 2023 Aug 25;4(3):550-562. doi: 10.1007/s42761-023-00215-z. eCollection 2023 Sep.

Abstract

People express their own emotions and perceive others' emotions via a variety of channels, including facial movements, body gestures, vocal prosody, and language. Studying these channels of affective behavior offers insight into both the experience and perception of emotion. Prior research has predominantly focused on studying individual channels of affective behavior in isolation using tightly controlled, non-naturalistic experiments. This approach limits our understanding of emotion in more naturalistic contexts where different channels of information tend to interact. Traditional methods struggle to address this limitation: manually annotating behavior is time-consuming, making it infeasible to do at large scale; manually selecting and manipulating stimuli based on hypotheses may neglect unanticipated features, potentially generating biased conclusions; and common linear modeling approaches cannot fully capture the complex, nonlinear, and interactive nature of real-life affective processes. In this methodology review, we describe how deep learning can be applied to address these challenges to advance a more naturalistic affective science. First, we describe current practices in affective research and explain why existing methods face challenges in revealing a more naturalistic understanding of emotion. Second, we introduce deep learning approaches and explain how they can be applied to tackle three main challenges: quantifying naturalistic behaviors, selecting and manipulating naturalistic stimuli, and modeling naturalistic affective processes. Finally, we describe the limitations of these deep learning methods, and how these limitations might be avoided or mitigated. By detailing the promise and the peril of deep learning, this review aims to pave the way for a more naturalistic affective science.

摘要

人们通过多种渠道表达自己的情感并感知他人的情感,这些渠道包括面部动作、身体姿势、语音韵律和语言。研究这些情感行为渠道有助于深入了解情感体验和感知。先前的研究主要集中在使用严格控制的非自然主义实验来孤立地研究情感行为的各个渠道。这种方法限制了我们在更自然主义的情境中对情感的理解,在这些情境中不同的信息渠道往往会相互作用。传统方法难以解决这一局限性:手动标注行为耗时费力,大规模进行不可行;基于假设手动选择和操纵刺激可能会忽略意外特征,从而可能得出有偏差的结论;常见的线性建模方法无法完全捕捉现实生活中情感过程的复杂、非线性和交互性质。在本方法综述中,我们描述了深度学习如何应用于应对这些挑战,以推动更自然主义的情感科学发展。首先,我们描述情感研究中的当前实践,并解释为什么现有方法在揭示对情感更自然主义的理解方面面临挑战。其次,我们介绍深度学习方法,并解释它们如何应用于应对三个主要挑战:量化自然主义行为、选择和操纵自然主义刺激以及对自然主义情感过程进行建模。最后,我们描述这些深度学习方法的局限性,以及如何避免或减轻这些局限性。通过详细阐述深度学习的前景和风险,本综述旨在为更自然主义的情感科学铺平道路。

相似文献

1
Advancing Naturalistic Affective Science with Deep Learning.利用深度学习推动自然主义情感科学发展。
Affect Sci. 2023 Aug 25;4(3):550-562. doi: 10.1007/s42761-023-00215-z. eCollection 2023 Sep.
4
Naturalistic Stimuli in Affective Neuroimaging: A Review.情感神经影像学中的自然主义刺激:综述
Front Hum Neurosci. 2021 Jun 17;15:675068. doi: 10.3389/fnhum.2021.675068. eCollection 2021.
6
Affective prosody disorders in adults with neurological conditions: A scoping review.神经疾病成人的情感韵律障碍:范围综述。
Int J Lang Commun Disord. 2023 Nov-Dec;58(6):1939-1954. doi: 10.1111/1460-6984.12909. Epub 2023 May 22.
8
The perception of emotion in body expressions.身体表情中的情绪感知。
Wiley Interdiscip Rev Cogn Sci. 2015 Mar-Apr;6(2):149-158. doi: 10.1002/wcs.1335. Epub 2014 Dec 22.

引用本文的文献

8
The Future of Affective Science: Introduction to the Special Issue.情感科学的未来:特刊引言
Affect Sci. 2023 Sep 12;4(3):429-442. doi: 10.1007/s42761-023-00220-2. eCollection 2023 Sep.
9
Emotion prediction as computation over a generative theory of mind.情绪预测作为一种生成心智理论的计算。
Philos Trans A Math Phys Eng Sci. 2023 Jul 24;381(2251):20220047. doi: 10.1098/rsta.2022.0047. Epub 2023 Jun 5.

本文引用的文献

1
Py-Feat: Python Facial Expression Analysis Toolbox.Py-Feat:Python面部表情分析工具箱。
Affect Sci. 2023 Aug 8;4(4):781-796. doi: 10.1007/s42761-023-00191-4. eCollection 2023 Dec.
3
Transition dynamics shape mental state concepts.转变动态塑造心理状态概念。
J Exp Psychol Gen. 2023 Oct;152(10):2804-2829. doi: 10.1037/xge0001405. Epub 2023 Apr 27.
4
Stimulus models test hypotheses in brains and DNNs.刺激模型在大脑和深度神经网络中检验假设。
Trends Cogn Sci. 2023 Mar;27(3):216-217. doi: 10.1016/j.tics.2022.12.003. Epub 2023 Jan 10.
6
Interpreting mental state decoding with deep learning models.深度学习模型解读心理状态解码。
Trends Cogn Sci. 2022 Nov;26(11):972-986. doi: 10.1016/j.tics.2022.07.003.
7
Degrees of algorithmic equivalence between the brain and its DNN models.大脑与其 DNN 模型之间的算法等价程度。
Trends Cogn Sci. 2022 Dec;26(12):1090-1102. doi: 10.1016/j.tics.2022.09.003. Epub 2022 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验