Suppr超能文献

通过潜在空间锚定实现域可扩展的无配对图像翻译

Domain-Scalable Unpaired Image Translation via Latent Space Anchoring.

作者信息

Huang Siyu, An Jie, Wei Donglai, Lin Zudi, Luo Jiebo, Pfister Hanspeter

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11707-11719. doi: 10.1109/TPAMI.2023.3287774. Epub 2023 Sep 5.

Abstract

Unpaired image-to-image translation (UNIT) aims to map images between two visual domains without paired training data. However, given a UNIT model trained on certain domains, it is difficult for current methods to incorporate new domains because they often need to train the full model on both existing and new domains. To address this problem, we propose a new domain-scalable UNIT method, termed as latent space anchoring, which can be efficiently extended to new visual domains and does not need to fine-tune encoders and decoders of existing domains. Our method anchors images of different domains to the same latent space of frozen GANs by learning lightweight encoder and regressor models to reconstruct single-domain images. In the inference phase, the learned encoders and decoders of different domains can be arbitrarily combined to translate images between any two domains without fine-tuning. Experiments on various datasets show that the proposed method achieves superior performance on both standard and domain-scalable UNIT tasks in comparison with the state-of-the-art methods.

摘要

无配对图像到图像翻译(UNIT)旨在在没有配对训练数据的情况下在两个视觉域之间映射图像。然而,对于在某些域上训练的UNIT模型,当前方法难以纳入新的域,因为它们通常需要在现有域和新域上对整个模型进行训练。为了解决这个问题,我们提出了一种新的域可扩展UNIT方法,称为潜在空间锚定,它可以有效地扩展到新的视觉域,并且不需要对现有域的编码器和解码器进行微调。我们的方法通过学习轻量级编码器和回归器模型来重建单域图像,将不同域的图像锚定到冻结GAN的相同潜在空间。在推理阶段,不同域的学习到的编码器和解码器可以任意组合,以在任意两个域之间翻译图像而无需微调。在各种数据集上的实验表明,与现有方法相比,所提出的方法在标准和域可扩展UNIT任务上均取得了优异的性能。

相似文献

1
Domain-Scalable Unpaired Image Translation via Latent Space Anchoring.通过潜在空间锚定实现域可扩展的无配对图像翻译
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11707-11719. doi: 10.1109/TPAMI.2023.3287774. Epub 2023 Sep 5.
3
Homomorphic Interpolation Network for Unpaired Image-to-Image Translation.同态插值网络在非配对图像到图像翻译中的应用。
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2534-2547. doi: 10.1109/TPAMI.2020.3036543. Epub 2022 Apr 1.
7
Anomaly detection in images with shared autoencoders.使用共享自动编码器进行图像异常检测。
Front Neurorobot. 2023 Jan 4;16:1046867. doi: 10.3389/fnbot.2022.1046867. eCollection 2022.
10
GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation.GP-UNIT:通用无监督图像到图像翻译的生成先验。
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11869-11883. doi: 10.1109/TPAMI.2023.3284003. Epub 2023 Sep 5.

本文引用的文献

2
Semantic Layout Manipulation With High-Resolution Sparse Attention.基于高分辨率稀疏注意力的语义布局操作。
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3768-3782. doi: 10.1109/TPAMI.2022.3181587. Epub 2023 Feb 3.
4
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation.利用深度生成先验进行多功能图像恢复和处理。
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7474-7489. doi: 10.1109/TPAMI.2021.3115428. Epub 2022 Oct 4.
5
CrossNet++: Cross-Scale Large-Parallax Warping for Reference-Based Super-Resolution.CrossNet++:用于基于参考的超分辨率的跨尺度大视差扭曲
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4291-4305. doi: 10.1109/TPAMI.2020.2997007. Epub 2021 Nov 3.
6
A Style-Based Generator Architecture for Generative Adversarial Networks.基于风格的生成对抗网络生成器架构。
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.
7
GANimation: Anatomically-aware Facial Animation from a Single Image.GANimation:基于单张图像的解剖学感知面部动画
Comput Vis ECCV. 2018 Sep;11214:835-851. doi: 10.1007/978-3-030-01249-6_50. Epub 2018 Oct 6.
8
Face photo-sketch synthesis and recognition.面部照片-素描合成与识别。
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):1955-67. doi: 10.1109/TPAMI.2008.222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验