Suppr超能文献

通过潜在空间锚定实现域可扩展的无配对图像翻译

Domain-Scalable Unpaired Image Translation via Latent Space Anchoring.

作者信息

Huang Siyu, An Jie, Wei Donglai, Lin Zudi, Luo Jiebo, Pfister Hanspeter

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11707-11719. doi: 10.1109/TPAMI.2023.3287774. Epub 2023 Sep 5.

Abstract

Unpaired image-to-image translation (UNIT) aims to map images between two visual domains without paired training data. However, given a UNIT model trained on certain domains, it is difficult for current methods to incorporate new domains because they often need to train the full model on both existing and new domains. To address this problem, we propose a new domain-scalable UNIT method, termed as latent space anchoring, which can be efficiently extended to new visual domains and does not need to fine-tune encoders and decoders of existing domains. Our method anchors images of different domains to the same latent space of frozen GANs by learning lightweight encoder and regressor models to reconstruct single-domain images. In the inference phase, the learned encoders and decoders of different domains can be arbitrarily combined to translate images between any two domains without fine-tuning. Experiments on various datasets show that the proposed method achieves superior performance on both standard and domain-scalable UNIT tasks in comparison with the state-of-the-art methods.

摘要

无配对图像到图像翻译(UNIT)旨在在没有配对训练数据的情况下在两个视觉域之间映射图像。然而,对于在某些域上训练的UNIT模型,当前方法难以纳入新的域,因为它们通常需要在现有域和新域上对整个模型进行训练。为了解决这个问题,我们提出了一种新的域可扩展UNIT方法,称为潜在空间锚定,它可以有效地扩展到新的视觉域,并且不需要对现有域的编码器和解码器进行微调。我们的方法通过学习轻量级编码器和回归器模型来重建单域图像,将不同域的图像锚定到冻结GAN的相同潜在空间。在推理阶段,不同域的学习到的编码器和解码器可以任意组合,以在任意两个域之间翻译图像而无需微调。在各种数据集上的实验表明,与现有方法相比,所提出的方法在标准和域可扩展UNIT任务上均取得了优异的性能。

相似文献

1
Domain-Scalable Unpaired Image Translation via Latent Space Anchoring.
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11707-11719. doi: 10.1109/TPAMI.2023.3287774. Epub 2023 Sep 5.
2
Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1254-1266. doi: 10.1109/TPAMI.2019.2950198. Epub 2021 Mar 5.
3
Homomorphic Interpolation Network for Unpaired Image-to-Image Translation.
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2534-2547. doi: 10.1109/TPAMI.2020.3036543. Epub 2022 Apr 1.
4
Learning low-dose CT degradation from unpaired data with flow-based model.
Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.
5
Cycle consistent twin energy-based models for image-to-image translation.
Med Image Anal. 2024 Jan;91:103031. doi: 10.1016/j.media.2023.103031. Epub 2023 Nov 19.
6
Pro-PULSE: Learning Progressive Encoders of Latent Semantics in GANs for Photo Upsampling.
IEEE Trans Image Process. 2022;31:1230-1242. doi: 10.1109/TIP.2022.3140603. Epub 2022 Jan 19.
7
Anomaly detection in images with shared autoencoders.
Front Neurorobot. 2023 Jan 4;16:1046867. doi: 10.3389/fnbot.2022.1046867. eCollection 2022.
8
The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification.
Comput Methods Programs Biomed. 2023 Jun;234:107511. doi: 10.1016/j.cmpb.2023.107511. Epub 2023 Mar 26.
9
Towards annotation-efficient segmentation via image-to-image translation.
Med Image Anal. 2022 Nov;82:102624. doi: 10.1016/j.media.2022.102624. Epub 2022 Sep 21.
10
GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation.
IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):11869-11883. doi: 10.1109/TPAMI.2023.3284003. Epub 2023 Sep 5.

引用本文的文献

本文引用的文献

2
Semantic Layout Manipulation With High-Resolution Sparse Attention.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3768-3782. doi: 10.1109/TPAMI.2022.3181587. Epub 2023 Feb 3.
3
A Domain Gap Aware Generative Adversarial Network for Multi-Domain Image Translation.
IEEE Trans Image Process. 2022;31:72-84. doi: 10.1109/TIP.2021.3125266. Epub 2021 Nov 30.
4
Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation.
IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):7474-7489. doi: 10.1109/TPAMI.2021.3115428. Epub 2022 Oct 4.
5
CrossNet++: Cross-Scale Large-Parallax Warping for Reference-Based Super-Resolution.
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4291-4305. doi: 10.1109/TPAMI.2020.2997007. Epub 2021 Nov 3.
6
A Style-Based Generator Architecture for Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.
7
GANimation: Anatomically-aware Facial Animation from a Single Image.
Comput Vis ECCV. 2018 Sep;11214:835-851. doi: 10.1007/978-3-030-01249-6_50. Epub 2018 Oct 6.
8
Face photo-sketch synthesis and recognition.
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):1955-67. doi: 10.1109/TPAMI.2008.222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验