Department of Physiology, School of Basic Medical Sciences, Center for Diabetes, Obesity and Metabolism, Shenzhen University Health Sciences Center, Shenzhen, 518060, Guangdong, China.
Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China.
Mol Neurodegener. 2018 Nov 22;13(1):62. doi: 10.1186/s13024-018-0295-z.
Although diabetic retinopathy (DR) has long been considered as a microvascular disorder, mounting evidence suggests that diabetic retinal neurodegeneration, in particular synaptic loss and dysfunction of retinal ganglion cells (RGCs) may precede retinal microvascular changes. Key molecules involved in this process remain poorly defined. The microtubule-associated protein tau is a critical mediator of neurotoxicity in Alzheimer's disease (AD) and other neurodegenerative diseases. However, the effect of tau, if any, in the context of diabetes-induced retinal neurodegeneration has yet to be ascertained. Here, we investigate the changes and putative roles of endogeneous tau in diabetic retinal neurodegeneration.
To this aim, we combine clinically used electrophysiological techniques, i.e. pattern electroretinogram and visual evoked potential, and molecular analyses in a well characterized high-fat diet (HFD)-induced mouse diabetes model in vivo and primary retinal ganglion cells (RGCs) in vitro.
We demonstrate for the first time that tau hyperphosphorylation via GSK3β activation causes vision deficits and synapse loss of RGCs in HFD-induced DR, which precedes retinal microvasculopathy and RGCs apoptosis. Moreover, intravitreal administration of an siRNA targeting to tau or a specific inhibitor of GSK3β reverses synapse loss and restores visual function of RGCs by attenuating tau hyperphosphorylation within a certain time frame of DR. The cellular mechanisms by which hyperphosphorylated tau induces synapse loss of RGCs upon glucolipotoxicity include i) destabilizing microtubule tracks and impairing microtubule-dependent synaptic targeting of cargoes such as mRNA and mitochondria; ii) disrupting synaptic energy production through mitochondria in a GSK3β-dependent manner.
Our study proposes mild retinal tauopathy as a new pathophysiological model for DR and tau as a novel therapeutic target to counter diabetic RGCs neurodegeneration occurring before retinal vasculature abnormalities.
尽管糖尿病视网膜病变(DR)长期以来一直被认为是一种微血管疾病,但越来越多的证据表明,糖尿病性视网膜神经退行性变,特别是视网膜神经节细胞(RGC)的突触丢失和功能障碍,可能先于视网膜微血管变化。在此过程中涉及的关键分子仍未得到很好的定义。微管相关蛋白 tau 是阿尔茨海默病(AD)和其他神经退行性疾病中神经毒性的关键介质。然而,tau 在糖尿病诱导的视网膜神经退行性变中的作用(如果有的话)尚未确定。在这里,我们研究了内源性 tau 在糖尿病性视网膜神经退行性变中的变化和可能的作用。
为此,我们结合了临床中使用的电生理学技术,即图形视网膜电图和视觉诱发电位,以及分子分析,在高糖高脂饮食(HFD)诱导的糖尿病小鼠模型体内和原代视网膜神经节细胞(RGC)体外进行研究。
我们首次证明,通过 GSK3β 激活导致 tau 过度磷酸化,导致 HFD 诱导的 DR 中 RGC 的视力障碍和突触丢失,这先于视网膜微血管病变和 RGC 凋亡。此外,在一定的 DR 时间范围内,通过玻璃体腔注射靶向 tau 的 siRNA 或 GSK3β 的特异性抑制剂,可通过减轻 tau 的过度磷酸化来逆转突触丢失并恢复 RGC 的视觉功能。在糖脂毒性作用下,过度磷酸化的 tau 诱导 RGC 突触丢失的细胞机制包括:i)破坏微管轨道,并损害货物(如 mRNA 和线粒体)的微管依赖性突触靶向;ii)通过 GSK3β 依赖性方式破坏线粒体的突触能量产生。
我们的研究提出轻度视网膜 tau 病作为 DR 的新病理生理学模型,tau 作为一种新的治疗靶点,可对抗糖尿病性 RGC 神经退行性变,这种改变发生在视网膜血管异常之前。