Naval Research Laboratory, Code 6181, 4555 Overlook Ave. SW, Washington, DC, 20375, USA.
Naval Research Laboratory, Code 6181, 4555 Overlook Ave. SW, Washington, DC, 20375, USA.
J Chromatogr A. 2018 Dec 21;1581-1582:125-134. doi: 10.1016/j.chroma.2018.11.002. Epub 2018 Nov 13.
Fuel chromatography is inherently limited by the high complexity of petroleum fuel compositions. In practice, almost no fuel components are fully resolved in gas chromatography. This is due to both insufficient peak capacity for the large number of individual components within time and chromatographic efficiency constraints, and insufficient resolving power of the stationary phase in the gas chromatography column relative to the many structurally similar isomers or homologs present in petrochemical fuels. Multidimensional approaches, longer columns and slower heating rates can offer some benefits but will not necessarily fully resolve co-eluting fuel compounds, especially within reasonable analysis times. The following work details how deconvolved mass spectral loadings, combined with library matching, provide a quality metric against which to automatically evaluate results obtained from an experimental evolving window factor analysis-multivariate curve resolution deconvolution algorithm applied to gas chromatography-mass spectrometry data. This algorithm was evaluated in the context of trace component detection in synthetic fuel data sets, dodecane and tetradecane detection in petrochemical fuels, and the detection of natural products unlikely to be present in petrochemical fuels. In the case of the trace component detection challenge, the experimental algorithm outperformed a control algorithm that utilized a singular value-based quality metric. Meanwhile, when detecting dodecane, tetradecane, and natural products in petrochemical fuels, the experimental algorithm allowed for higher-quality compound identification results than could be obtained without peak deconvolution, thus reliably improving fuel component resolution in an automated fashion.
燃料色谱分析受到石油燃料成分高度复杂性的固有限制。在实践中,几乎没有任何燃料成分能在气相色谱中完全分离。这是由于在时间和色谱效率的限制下,色谱柱中的峰容量不足以完全分离大量的单个成分,以及相对于石化燃料中存在的许多结构相似的异构体或同系物,气相色谱柱中的固定相的分辨率不足。多维方法、更长的柱子和更慢的加热速率可以提供一些好处,但不一定能完全分离共洗脱燃料化合物,特别是在合理的分析时间内。以下工作详细介绍了如何对去卷积质谱负载进行处理,同时结合库匹配,提供了一个质量指标,用于自动评估应用于气相色谱-质谱数据的实验演化窗口因子分析-多元曲线分辨反卷积算法所获得的结果。该算法在合成燃料数据集的痕量成分检测、石化燃料中十二烷和十四烷的检测以及可能不存在于石化燃料中的天然产物的检测方面进行了评估。在痕量成分检测挑战中,实验算法优于使用基于奇异值的质量指标的对照算法。同时,在检测石化燃料中的十二烷、十四烷和天然产物时,实验算法允许获得比没有峰反卷积时更高质量的化合物识别结果,从而以可靠的方式自动提高燃料成分的分辨率。