Tampere University of Technology, Laboratory of Photonics, FI-33101, Tampere, Finland.
Institut FEMTO-ST, Université Bourgogne Franche-Comté, CNRS UMR 6174, 25000, Besançon, France.
Nat Commun. 2018 Nov 22;9(1):4923. doi: 10.1038/s41467-018-07355-y.
A central research area in nonlinear science is the study of instabilities that drive extreme events. Unfortunately, techniques for measuring such phenomena often provide only partial characterisation. For example, real-time studies of instabilities in nonlinear optics frequently use only spectral data, limiting knowledge of associated temporal properties. Here, we show how machine learning can overcome this restriction to study time-domain properties of optical fibre modulation instability based only on spectral intensity measurements. Specifically, a supervised neural network is trained to correlate the spectral and temporal properties of modulation instability using simulations, and then applied to analyse high dynamic range experimental spectra to yield the probability distribution for the highest temporal peaks in the instability field. We also use unsupervised learning to classify noisy modulation instability spectra into subsets associated with distinct temporal dynamic structures. These results open novel perspectives in all systems exhibiting instability where direct time-domain observations are difficult.
非线性科学的一个核心研究领域是研究驱动极端事件的不稳定性。不幸的是,用于测量此类现象的技术通常只能提供部分特征描述。例如,非线性光学中不稳定性的实时研究通常仅使用光谱数据,限制了对相关时间特性的了解。在这里,我们展示了机器学习如何克服这一限制,仅基于光谱强度测量来研究光纤调制不稳定性的时域特性。具体来说,使用模拟训练监督神经网络来关联调制不稳定性的光谱和时域特性,然后将其应用于分析高动态范围实验光谱,以得出不稳定性场中最高时间峰值的概率分布。我们还使用无监督学习将有噪声的调制不稳定性光谱分类为与不同时间动态结构相关的子集。这些结果为所有表现出不稳定性且难以进行直接时域观测的系统开辟了新的视角。