Suppr超能文献

基于全列阵系统单次记录的二维空间强度模式对超短脉冲进行深度学习重建。

Deep learning reconstruction of ultrashort pulses from 2D spatial intensity patterns recorded by an all-in-line system in a single-shot.

作者信息

Ziv Ron, Dikopoltsev Alex, Zahavy Tom, Rubinstein Ittai, Sidorenko Pavel, Cohen Oren, Segev Mordechai

出版信息

Opt Express. 2020 Mar 2;28(5):7528-7538. doi: 10.1364/OE.383217.

Abstract

We propose a simple all-in-line single-shot scheme for diagnostics of ultrashort laser pulses, consisting of a multi-mode fiber, a nonlinear crystal and a camera. The system records a 2D spatial intensity pattern, from which the pulse shape (amplitude and phase) are recovered, through a fast Deep Learning algorithm. We explore this scheme in simulations and demonstrate the recovery of ultrashort pulses, robustness to noise in measurements and to inaccuracies in the parameters of the system components. Our technique mitigates the need for commonly used iterative optimization reconstruction methods, which are usually slow and hampered by the presence of noise. These features make our concept system advantageous for real time probing of ultrafast processes and noisy conditions. Moreover, this work exemplifies that using deep learning we can unlock new types of systems for pulse recovery.

摘要

我们提出了一种用于超短激光脉冲诊断的简单全在线单次测量方案,该方案由多模光纤、非线性晶体和相机组成。该系统记录二维空间强度图案,通过快速深度学习算法从中恢复脉冲形状(幅度和相位)。我们在模拟中探索了该方案,并展示了超短脉冲的恢复、对测量噪声和系统组件参数不准确的鲁棒性。我们的技术减少了对常用迭代优化重建方法的需求,这些方法通常速度较慢且受噪声影响。这些特性使我们的概念系统在超快过程和噪声条件的实时探测方面具有优势。此外,这项工作表明,利用深度学习我们可以解锁新型的脉冲恢复系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验