Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, 182 51 Prague, Czech Republic.
Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 57, 182 51 Prague, Czech Republic.
Biosens Bioelectron. 2019 Feb 1;126:365-372. doi: 10.1016/j.bios.2018.11.002. Epub 2018 Nov 6.
Surface plasmon resonance (SPR) biosensors have become an important label-free optical biomolecular sensing technology and a "gold standard" for retrieving information on the kinetics of biomolecular interactions. Even though biomolecules typically contain an abundance of easily ionizable chemical groups, there is a gap in understanding of whether (and how) the electrostatic charge of a biomolecular system influences the SPR biosensor response. In this work we show that negative static charge present in a biomolecular layer on the surface of an SPR sensor results in significant SPR spectral shifts, and we identify two major mechanisms responsible for such shifts: 1) the formation of an electrical double layer (ionic mechanism), and 2) changes in the electron density at the surface of a metal (electronic mechanism). We show that under low ionic strength conditions, the electronic mechanism is dominant and the SPR wavelength shift is linearly proportional to the surface concentration of biomolecular charges. At high ionic strength conditions, both electric and ionic mechanisms contribute to the SPR wavelength shift. Using the electronic mechanism, we estimated the pKa of surface-bound carboxylic groups and the relative concentration of the carboxyl-terminated alkanethiols in a binary self-assembled monolayer of alkanethiols. The reported sensitivity of SPR to surface charge is especially important in the context of biomolecular sensing. Moreover, it provides an avenue for the application of SPR sensors for fast, label-free determination of the net charge of a biomolecular coating, which is of interest in material science, surface chemistry, electrochemistry, and other fields.
表面等离子体共振(SPR)生物传感器已成为一种重要的无标记光学生物分子传感技术,也是获取生物分子相互作用动力学信息的“金标准”。尽管生物分子通常含有丰富的易离解化学基团,但对于生物分子系统的静电电荷是否会影响 SPR 生物传感器的响应以及影响方式仍存在认识上的差距。在这项工作中,我们表明 SPR 传感器表面生物分子层中存在的负静电荷会导致明显的 SPR 光谱位移,并且我们确定了导致这种位移的两个主要机制:1)双电层的形成(离子机制),以及 2)金属表面电子密度的变化(电子机制)。我们表明,在低离子强度条件下,电子机制占主导地位,SPR 波长位移与生物分子电荷的表面浓度呈线性关系。在高离子强度条件下,电和离子机制都对 SPR 波长位移有贡献。我们利用电子机制估计了表面结合羧酸基团的 pKa 值以及在烷硫醇自组装双层中羧酸末端烷硫醇的相对浓度。SPR 对表面电荷的这种高灵敏度在生物分子传感方面特别重要。此外,它为 SPR 传感器在材料科学、表面化学、电化学和其他领域中快速、无标记地测定生物分子涂层的净电荷提供了一种途径。