Chi Nan, Zhao Yiheng, Shi Meng, Zou Peng, Lu Xingyu
Opt Express. 2018 Oct 1;26(20):26700-26712. doi: 10.1364/OE.26.026700.
In this paper, we demonstrate a novel Gaussian kernel-aided deep neural network (GK-DNN) equalizer that can effectively compensate for the high nonlinear distortion of underwater PAM8 visible light communication (VLC) channels. The application of a Gaussian kernel can reduce the necessary training iterations to 47.06%, enabling it to outperform the traditional DNN equalizer. At the same time, a novel design strategy with respect to the structure of the GK-DNN equalizer is proposed, which can effectively save computing resources and reduce the data volume of the necessary training data set. By using the GK-DNN equalizer, a 1.5 Gbps PAM8 VLC system over 1.2-m underwater transmission is successfully demonstrated.
在本文中,我们展示了一种新型的高斯核辅助深度神经网络(GK-DNN)均衡器,它可以有效补偿水下PAM8可见光通信(VLC)信道的高度非线性失真。高斯核的应用可将所需的训练迭代次数减少至47.06%,使其性能优于传统的DNN均衡器。同时,提出了一种关于GK-DNN均衡器结构的新颖设计策略,该策略可以有效节省计算资源并减少所需训练数据集的数据量。通过使用GK-DNN均衡器,成功演示了在1.2米水下传输的1.5 Gbps PAM8 VLC系统。