Suppr超能文献

水下PAM8可见光通信系统中使用的高斯核辅助深度神经网络均衡器。

Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system.

作者信息

Chi Nan, Zhao Yiheng, Shi Meng, Zou Peng, Lu Xingyu

出版信息

Opt Express. 2018 Oct 1;26(20):26700-26712. doi: 10.1364/OE.26.026700.

Abstract

In this paper, we demonstrate a novel Gaussian kernel-aided deep neural network (GK-DNN) equalizer that can effectively compensate for the high nonlinear distortion of underwater PAM8 visible light communication (VLC) channels. The application of a Gaussian kernel can reduce the necessary training iterations to 47.06%, enabling it to outperform the traditional DNN equalizer. At the same time, a novel design strategy with respect to the structure of the GK-DNN equalizer is proposed, which can effectively save computing resources and reduce the data volume of the necessary training data set. By using the GK-DNN equalizer, a 1.5 Gbps PAM8 VLC system over 1.2-m underwater transmission is successfully demonstrated.

摘要

在本文中,我们展示了一种新型的高斯核辅助深度神经网络(GK-DNN)均衡器,它可以有效补偿水下PAM8可见光通信(VLC)信道的高度非线性失真。高斯核的应用可将所需的训练迭代次数减少至47.06%,使其性能优于传统的DNN均衡器。同时,提出了一种关于GK-DNN均衡器结构的新颖设计策略,该策略可以有效节省计算资源并减少所需训练数据集的数据量。通过使用GK-DNN均衡器,成功演示了在1.2米水下传输的1.5 Gbps PAM8 VLC系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验