Suppr超能文献

基于多层感知器的漂浮大型海藻水华自动监测方法:以黄海为例的GOCI影像研究

Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: case study of Yellow Sea using GOCI images.

作者信息

Qiu Zhongfeng, Li Zhaoxin, Bilal Muhammad, Wang Shengqiang, Sun Deyong, Chen Yanlong

出版信息

Opt Express. 2018 Oct 15;26(21):26810-26829. doi: 10.1364/OE.26.026810.

Abstract

Timely and accurate information about floating macroalgae blooms (MAB), including their distribution, movement, and duration, is crucial in order for local government and residents to grasp the whole picture, and then plan effectively to restrain economic damage. Plenty of threshold-based index methods have been developed to detect surface algae pixels in various ocean color data with different manners; however, these methods cannot be used for every satellite sensor because of the spectral band configuration. Also, these traditional methods generally require other reliable indicators, and even visual inspection, in order to achieve an acceptable mapping of MAB that appears under diverse environmental conditions (cloud, aerosol, and sun glint). To overcome these drawbacks, a machine learning algorithm named Multi-Layer Perceptron (MLP) was used in this paper to establish a novel automatic method to monitor MAB continuously in the Yellow Sea, using Geostationary Ocean Color Imager (GOCI) imagery. The method consists of two MLP models, which consider both spectral and spatial features of Rayleigh-corrected reflectance (R) maps. Accuracy assessment and performance comparison showed that the proposed method has the capability to provide prediction maps of MAB with high accuracy (F1-score approaching 90% or more), and with more robustness than the traditional methods. Most importantly, the model is practically adaptable for other ocean color instruments. This allows customized models to be built and used for monitoring MAB in any regional areas. With the development of machine learning models, long-term mapping of MAB in global ocean is conducive to promoting the associated studies.

摘要

及时、准确地获取有关漂浮大型海藻爆发(MAB)的信息,包括其分布、移动和持续时间,对于地方政府和居民全面了解情况并有效规划以抑制经济损失至关重要。已经开发了大量基于阈值的指数方法,以不同方式检测各种海洋颜色数据中的表层藻类像素;然而,由于光谱带配置的原因,这些方法并非适用于每一种卫星传感器。此外,这些传统方法通常需要其他可靠指标,甚至目视检查,才能在不同环境条件(云、气溶胶和太阳耀斑)下实现对MAB的可接受的制图。为了克服这些缺点,本文使用一种名为多层感知器(MLP)的机器学习算法,利用地球静止海洋彩色成像仪(GOCI)图像,建立一种新颖的自动方法,用于连续监测黄海的MAB。该方法由两个MLP模型组成,它们考虑了瑞利校正反射率(R)图的光谱和空间特征。精度评估和性能比较表明,所提出的方法有能力提供高精度的MAB预测图(F1分数接近90%或更高),并且比传统方法更具稳健性。最重要的是,该模型实际上适用于其他海洋颜色仪器。这使得可以构建定制模型并用于监测任何区域的MAB。随着机器学习模型的发展,全球海洋MAB的长期制图有利于推动相关研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验