Nape Isaac, Otte Eileen, Vallés Adam, Rosales-Guzmán Carmelo, Cardano Filippo, Denz Cornelia, Forbes Andrew
Opt Express. 2018 Oct 15;26(21):26946-26960. doi: 10.1364/OE.26.026946.
Using spatial modes for quantum key distribution (QKD) has become highly topical due to their infinite dimensionality, promising high information capacity per photon. However, spatial distortions reduce the feasible secret key rates and compromise the security of a quantum channel. In an extreme form such a distortion might be a physical obstacle, impeding line-of-sight for free-space channels. Here, by controlling the radial degree of freedom of a photon's spatial mode, we are able to demonstrate hybrid high-dimensional QKD through obstacles with self-reconstructing single photons. We construct high-dimensional mutually unbiased bases using spin-orbit hybrid states that are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and show secure transmission through partially obstructed quantum links. Using a prepare-measure protocol we report higher quantum state self-reconstruction and information retention for the non-diffracting BG modes as compared to Laguerre-Gaussian modes, obtaining a quantum bit error rate (QBER) that is up to 3× lower. This work highlights the importance of controlling the radial mode of single photons in quantum information processing and communication as well as the advantages of QKD with hybrid states.
由于空间模式具有无限维性,有望实现每个光子的高信息容量,因此利用空间模式进行量子密钥分发(QKD)已成为热门话题。然而,空间畸变会降低可行的密钥率,并危及量子信道的安全性。在极端情况下,这种畸变可能是一个物理障碍物,阻碍自由空间信道的视线。在此,通过控制光子空间模式的径向自由度,我们能够通过具有自重构单光子的障碍物演示混合高维QKD。我们使用自旋 - 轨道混合态构建高维相互无偏基,这些混合态通过非衍射贝塞尔 - 高斯(BG)轮廓进行径向调制,并展示了通过部分受阻量子链路的安全传输。使用制备 - 测量协议,我们报告了与拉盖尔 - 高斯模式相比,非衍射BG模式具有更高的量子态自重构和信息保留能力,获得的量子比特误码率(QBER)低至三倍。这项工作突出了在量子信息处理和通信中控制单光子径向模式的重要性以及混合态QKD的优势。