Bouchard Frédéric, Valencia Natalia Herrera, Brandt Florian, Fickler Robert, Huber Marcus, Malik Mehul
Opt Express. 2018 Nov 26;26(24):31925-31941. doi: 10.1364/OE.26.031925.
With the emergence of the field of quantum communications, the appropriate choice of photonic degrees of freedom used for encoding information is of paramount importance. Highly precise techniques for measuring the polarisation, frequency, and arrival time of a photon have been developed. However, the transverse spatial degree of freedom still lacks a measurement scheme that allows the reconstruction of its full transverse structure with a simple implementation and a high level of accuracy. Here we show a method to measure the azimuthal and radial modes of Laguerre-Gaussian beams with a greater than 99 % accuracy, using a single phase screen. We compare our technique with previous commonly used methods and demonstrate the significant improvements it presents for quantum key distribution and state tomography of high-dimensional quantum states of light. Moreover, our technique can be readily extended to any arbitrary family of spatial modes, such as mutually unbiased bases, Hermite-Gauss, and Ince-Gauss. Our scheme will significantly enhance existing quantum and classical communication protocols that use the spatial structure of light, as well as enable fundamental experiments on spatial-mode entanglement to reach their full potential.
随着量子通信领域的出现,用于编码信息的光子自由度的恰当选择至关重要。已经开发出了用于测量光子偏振、频率和到达时间的高精度技术。然而,横向空间自由度仍然缺乏一种测量方案,该方案能够以简单的实现方式和高精度重建其完整的横向结构。在此,我们展示了一种使用单个相位屏以高于99%的精度测量拉盖尔 - 高斯光束方位角和径向模式的方法。我们将我们的技术与先前常用的方法进行比较,并证明它在量子密钥分发和高维光量子态的态层析成像方面所带来的显著改进。此外,我们的技术可以很容易地扩展到任何任意的空间模式族,如相互无偏基、厄米 - 高斯和因斯 - 高斯模式。我们的方案将显著增强现有的利用光的空间结构的量子和经典通信协议,同时使关于空间模式纠缠的基础实验能够充分发挥其潜力。