Štefko Marcel, Ottino Baptiste, Douglass Kyle M, Manley Suliana
Opt Express. 2018 Nov 12;26(23):30882-30900. doi: 10.1364/OE.26.030882.
Super-resolution fluorescence microscopy improves spatial resolution, but this comes at a loss of image throughput and presents unique challenges in identifying optimal acquisition parameters. Microscope automation routines can offset these drawbacks, but thus far have required user inputs that presume a priori knowledge about the sample. Here, we develop a flexible illumination control system for localization microscopy comprised of two interacting components that require no sample-specific inputs: a self-tuning controller and a deep learning-based molecule density estimator that is accurate over an extended range of densities. This system obviates the need to fine-tune parameters and enables robust, autonomous illumination control for localization microscopy.
超分辨率荧光显微镜提高了空间分辨率,但这是以图像通量的损失为代价的,并且在确定最佳采集参数方面带来了独特的挑战。显微镜自动化程序可以抵消这些缺点,但到目前为止,需要用户输入,而这些输入假定了关于样品的先验知识。在这里,我们开发了一种用于定位显微镜的灵活照明控制系统,该系统由两个相互作用的组件组成,不需要特定于样品的输入:一个自调谐控制器和一个基于深度学习的分子密度估计器,该估计器在广泛的密度范围内都很准确。该系统无需微调参数,并能够为定位显微镜实现强大的自主照明控制。