Suppr超能文献

高通量纳米显微镜的集成平台。

An integrated platform for high-throughput nanoscopy.

机构信息

Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Nat Biotechnol. 2023 Nov;41(11):1549-1556. doi: 10.1038/s41587-023-01702-1. Epub 2023 Mar 13.

Abstract

Single-molecule localization microscopy enables three-dimensional fluorescence imaging at tens-of-nanometer resolution, but requires many camera frames to reconstruct a super-resolved image. This limits the typical throughput to tens of cells per day. While frame rates can now be increased by over an order of magnitude, the large data volumes become limiting in existing workflows. Here we present an integrated acquisition and analysis platform leveraging microscopy-specific data compression, distributed storage and distributed analysis to enable an acquisition and analysis throughput of 10,000 cells per day. The platform facilitates graphically reconfigurable analyses to be automatically initiated from the microscope during acquisition and remotely executed, and can even feed back and queue new acquisition tasks on the microscope. We demonstrate the utility of this framework by imaging hundreds of cells per well in multi-well sample formats. Our platform, implemented within the PYthon-Microscopy Environment (PYME), is easily configurable to control custom microscopes, and includes a plugin framework for user-defined extensions.

摘要

单分子定位显微镜能够以数十纳米的分辨率进行三维荧光成像,但需要拍摄许多相机帧才能重建超分辨率图像。这限制了典型的通量,每天只能处理数十个细胞。虽然现在可以将帧率提高一个数量级以上,但在现有的工作流程中,大量的数据量仍然是一个限制因素。在这里,我们提出了一个集成的采集和分析平台,利用显微镜特定的数据压缩、分布式存储和分布式分析,实现了每天 10000 个细胞的采集和分析吞吐量。该平台支持图形化的可重新配置分析,这些分析可以在采集过程中从显微镜自动启动,并远程执行,甚至可以在显微镜上反馈和排队新的采集任务。我们通过在多孔样品格式中对数百个细胞进行成像,展示了该框架的实用性。我们的平台在 PYthon-Microscopy Environment (PYME) 中实现,易于配置以控制自定义显微镜,并包括用于用户定义扩展的插件框架。

相似文献

1
An integrated platform for high-throughput nanoscopy.
Nat Biotechnol. 2023 Nov;41(11):1549-1556. doi: 10.1038/s41587-023-01702-1. Epub 2023 Mar 13.
2
Build and operation of a custom 3D, multicolor, single-molecule localization microscope.
Nat Protoc. 2024 Aug;19(8):2467-2525. doi: 10.1038/s41596-024-00989-x. Epub 2024 May 3.
3
Building a super-resolution fluorescence cryomicroscope.
Methods Cell Biol. 2024;187:205-222. doi: 10.1016/bs.mcb.2024.02.026. Epub 2024 Mar 13.
4
Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging.
Nat Commun. 2023 May 18;14(1):2854. doi: 10.1038/s41467-023-38452-2.
9
[Comparison and progress review of various super-resolution fluorescence imaging techniques].
Se Pu. 2021 Oct;39(10):1055-1064. doi: 10.3724/SP.J.1123.2021.06015.
10
Deep learning-based spectroscopic single-molecule localization microscopy.
J Biomed Opt. 2024 Jun;29(6):066501. doi: 10.1117/1.JBO.29.6.066501. Epub 2024 May 24.

引用本文的文献

1
Efficient Double Helix Detection with Steerable Filters.
bioRxiv. 2025 Aug 20:2025.08.14.670427. doi: 10.1101/2025.08.14.670427.
3
From Biophysics to Biomedical Physics.
ACS Bio Med Chem Au. 2024 Dec 19;5(3):320-333. doi: 10.1021/acsbiomedchemau.4c00096. eCollection 2025 Jun 18.
5
Stimulated emission does not radiate in a pure dipole pattern.
Optica. 2024 Apr 20;11(4):464-470. doi: 10.1364/optica.515226. Epub 2024 Mar 29.
7
Microfluidics-based automatic immunofluorescence staining for single-molecule localization microscopy.
Biomed Opt Express. 2024 Nov 21;15(12):6893-6904. doi: 10.1364/BOE.540434. eCollection 2024 Dec 1.
8
Identification of coilin interactors reveals coordinated control of Cajal body number and structure.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202305081. Epub 2024 Nov 27.
9
Exploring Transient States of PAmKate to Enable Improved Cryogenic Single-Molecule Imaging.
J Am Chem Soc. 2024 Oct 23;146(42):28707-28716. doi: 10.1021/jacs.4c05632. Epub 2024 Oct 10.
10
Navigate: an open-source platform for smart light-sheet microscopy.
Nat Methods. 2024 Nov;21(11):1967-1969. doi: 10.1038/s41592-024-02413-4.

本文引用的文献

1
Sub-diffraction error mapping for localisation microscopy images.
Nat Commun. 2021 Sep 23;12(1):5611. doi: 10.1038/s41467-021-25812-z.
2
Deep learning enables fast and dense single-molecule localization with high accuracy.
Nat Methods. 2021 Sep;18(9):1082-1090. doi: 10.1038/s41592-021-01236-x. Epub 2021 Sep 3.
3
PYMEVisualize: an open-source tool for exploring 3D super-resolution data.
Nat Methods. 2021 Jun;18(6):582-584. doi: 10.1038/s41592-021-01165-9.
4
Optimizing imaging speed and excitation intensity for single-molecule localization microscopy.
Nat Methods. 2020 Sep;17(9):909-912. doi: 10.1038/s41592-020-0918-5. Epub 2020 Aug 17.
5
Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl.
Nat Methods. 2019 Dec;16(12):1247-1253. doi: 10.1038/s41592-019-0612-7. Epub 2019 Oct 21.
6
Autonomous illumination control for localization microscopy.
Opt Express. 2018 Nov 12;26(23):30882-30900. doi: 10.1364/OE.26.030882.
7
Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation.
Cell. 2018 Aug 9;174(4):884-896.e17. doi: 10.1016/j.cell.2018.06.032. Epub 2018 Jul 26.
8
Deep learning massively accelerates super-resolution localization microscopy.
Nat Biotechnol. 2018 Jun;36(5):460-468. doi: 10.1038/nbt.4106. Epub 2018 Apr 16.
9
Quantitative mapping and minimization of super-resolution optical imaging artifacts.
Nat Methods. 2018 Apr;15(4):263-266. doi: 10.1038/nmeth.4605. Epub 2018 Feb 19.
10
Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images.
Annu Rev Biochem. 2018 Jun 20;87:965-989. doi: 10.1146/annurev-biochem-060815-014801. Epub 2017 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验