Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
Gene. 2019 Feb 20;686:146-159. doi: 10.1016/j.gene.2018.11.069. Epub 2018 Nov 22.
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
十多年前,一项具有里程碑意义的研究报告称,通过重编程成纤维细胞可以获得诱导多能干细胞(iPSCs),这一研究改变了干细胞研究,引起了全球科学界的兴趣。这些细胞规避了与胚胎干细胞相关的伦理和免疫问题,以及与成体干细胞相关的有限自我更新能力和受限分化潜能。iPSCs 具有巨大的潜力,可以用于理解人类基本生物学、体外疾病建模、高通量药物测试和发现以及个性化再生医学。涉及逆转录病毒和慢病毒载体将重编程因子递送到体细胞中以生成 iPSCs 的传统重编程方法使这些细胞的临床适用性失效。虽然这些基因传递系统效率高且强大,但它们具有巨大的遗传修饰永久性风险,并且具有潜在的致瘤性。为了规避这些安全问题并为人类治疗衍生 iPSCs,巨大的技术进步导致了非整合病毒和非病毒方法的发展。这些基因传递技术减少或消除了任何基因组改变的风险,并增强了 iPSCs 从实验室到临床的前景。本综述全面概述了非整合病毒(腺病毒载体、腺相关病毒载体和仙台病毒载体)和基于 DNA 的非病毒(质粒转染、微小环载体、转座子载体、附加体载体和脂质体磁转染)方法,这些方法有可能产生无转基因 iPSCs。对这些技术的理解可以为 iPSCs 在各种生物医学应用中的使用铺平道路。