Mulkidjanian A Y, Shalaeva D N, Lyamzaev K G, Chernyak B V
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
Lomonosov Moscow State University, School of Bioengineering and Bioinformatics, Moscow, 119991, Russia.
Biochemistry (Mosc). 2018 Oct;83(10):1263-1278. doi: 10.1134/S0006297918100115.
Oxidative stress causes selective oxidation of cardiolipin (CL), a four-tail lipid specific for the inner mitochondrial membrane. Interaction with oxidized CL transforms cytochrome c into peroxidase capable of oxidizing even more CL molecules. Ultimately, this chain of events leads to the pore formation in the outer mitochondrial membrane and release of mitochondrial proteins, including cytochrome c, into the cytoplasm. In the cytoplasm, cytochrome c promotes apoptosome assembly that triggers apoptosis (programmed cell death). Because of this amplification cascade, even an occasional oxidation of a single CL molecule by endogenously formed reactive oxygen species (ROS) might cause cell death, unless the same CL oxidation triggers a separate chain of antiapoptotic reactions that would prevent the CL-mediated apoptotic cascade. Here, we argue that the key function of CL in mitochondria and other coupling membranes is to prevent proton leak along the interface of interacting membrane proteins. Therefore, CL oxidation should increase proton permeability through the CL-rich clusters of membrane proteins (CL islands) and cause a drop in the mitochondrial membrane potential (MMP). On one hand, the MMP drop should hinder ROS generation and further CL oxidation in the entire mitochondrion. On the other hand, it is known to cause rapid fission of the mitochondrial network and formation of many small mitochondria, only some of which would contain oxidized CL islands. The fission of mitochondrial network would hinder apoptosome formation by preventing cytochrome c release from healthy mitochondria, so that slowly working protein quality control mechanisms would have enough time to eliminate mitochondria with the oxidized CL. Because of these two oppositely directed regulatory pathways, both triggered by CL oxidation, the fate of the cell appears to be determined by the balance between the CL-mediated proapoptotic and antiapoptotic reactions. Since this balance depends on the extent of CL oxidation, mitochondria-targeted antioxidants might be able to ensure cell survival in many pathologies by preventing CL oxidation.
氧化应激会导致心磷脂(CL)发生选择性氧化,心磷脂是线粒体内膜特有的一种四尾脂质。与氧化型CL相互作用会将细胞色素c转化为过氧化物酶,这种酶甚至能够氧化更多的CL分子。最终,这一系列事件会导致线粒体外膜形成孔道,并使包括细胞色素c在内的线粒体蛋白释放到细胞质中。在细胞质中,细胞色素c会促进凋亡小体的组装,从而引发细胞凋亡(程序性细胞死亡)。由于这种放大级联反应,即使内源性生成的活性氧(ROS)偶尔氧化单个CL分子也可能导致细胞死亡,除非相同的CL氧化引发一系列单独的抗凋亡反应,从而阻止CL介导的凋亡级联反应。在此,我们认为CL在线粒体和其他偶联膜中的关键功能是防止质子沿相互作用的膜蛋白界面泄漏。因此,CL氧化应会增加质子通过富含CL的膜蛋白簇(CL岛)的通透性,并导致线粒体膜电位(MMP)下降。一方面,MMP下降应会阻碍整个线粒体中ROS的生成以及进一步的CL氧化。另一方面,已知MMP下降会导致线粒体网络迅速分裂并形成许多小线粒体,其中只有一些会含有氧化的CL岛。线粒体网络的分裂会通过阻止细胞色素c从健康线粒体中释放来阻碍凋亡小体的形成,这样缓慢运行的蛋白质质量控制机制就有足够的时间清除含有氧化CL的线粒体。由于这两条由CL氧化引发的相反调节途径,细胞的命运似乎取决于CL介导的促凋亡和抗凋亡反应之间的平衡。由于这种平衡取决于CL氧化的程度,靶向线粒体的抗氧化剂或许能够通过防止CL氧化来确保细胞在许多病理状态下存活。