Amselem Gabriel, Sart Sébastien, Baroud Charles N
LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS, Palaiseau, France.
LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS, Palaiseau, France; Physical Microfluidics and Bioengineering unit, Département Génomes et Génétique, Institut Pasteur, Paris, France.
Methods Cell Biol. 2018;148:177-199. doi: 10.1016/bs.mcb.2018.05.004. Epub 2018 Jul 29.
The ability to encapsulate cells individually in droplets has many potential applications, for example for observing the heterogeneity of behaviors within a population. However, implementing operations on moving droplets require feedback control and instruments that provide precise timing. These technical difficulties impede the adoption of droplet microfluidic protocols in nonspecialist labs. In this chapter we describe an approach to produce and manipulate droplets that remain stationary within a microfluidic chamber, by fabricating a microfluidic device having three-dimensional topography. The method uses microchannels that confine the fluids everywhere except in predefined regions where the channels have a large height, a technique known as "rails and anchors." By relying on the natural tendency of droplets to minimize their surface area, the approach provides a wide range of droplet manipulation tools. This chapter shows how this can be used to produce droplets, and several biological applications are demonstrated.
将细胞逐个封装在液滴中的能力有许多潜在应用,例如用于观察群体内行为的异质性。然而,对移动液滴进行操作需要反馈控制和能提供精确计时的仪器。这些技术难题阻碍了非专业实验室采用液滴微流控方案。在本章中,我们描述了一种通过制造具有三维地形的微流控装置来产生和操纵在微流控腔内保持静止的液滴的方法。该方法使用微通道,这些微通道在除了通道具有大高度的预定义区域之外的各处限制流体,这一技术称为“轨道和锚定”。通过依靠液滴使表面积最小化的自然趋势,该方法提供了广泛的液滴操纵工具。本章展示了如何利用这一方法来产生液滴,并演示了几个生物学应用。