Suppr超能文献

存在异常值时的贝塔回归 - 一种灵活的贝叶斯解决方案。

Beta regression in the presence of outliers - A wieldy Bayesian solution.

机构信息

Department of Statistics, University of Pretoria, Pretoria, South Africa.

Faculty of Mathematical Sciences, Department of Statistics, Shahrood University of Technology, Shahroud, Iran.

出版信息

Stat Methods Med Res. 2019 Dec;28(12):3729-3740. doi: 10.1177/0962280218814574. Epub 2018 Nov 25.

Abstract

Real phenomena often leads to challenges in data. One of these is outliers or influential values. Especially in a small sample, these values can have a major influence on the modeling process. In the beta regression framework, this issue has been addressed mainly in two ways: the assumption of a different response model and the application of a minimum density power divergence estimation (MDPDE) procedure. In this paper, however, we propose a simple hierarchical Bayesian methodology in the context of a varying dispersion beta response model that is robust to outliers, as shown through an extensive simulation study and analysis of two real data sets. To robustify Bayesian modeling, a heavy-tailed Student's t prior with uniform degrees of freedom is adopted for the regression coefficients. This proposal results in a wieldy implementation procedure which avails practical use of the approach.

摘要

实际现象往往会给数据带来挑战。其中之一是异常值或有影响的值。特别是在小样本中,这些值可能会对建模过程产生重大影响。在贝塔回归框架中,这个问题主要通过两种方法来解决:假设不同的响应模型和应用最小密度幂离差估计(MDPDE)程序。然而,在本文中,我们提出了一种简单的分层贝叶斯方法,即在变分散β响应模型的背景下,该方法对异常值具有鲁棒性,这通过广泛的模拟研究和两个真实数据集的分析得到了证明。为了使贝叶斯建模稳健,我们采用具有均匀自由度的重尾学生 t 先验对回归系数进行建模。这一建议产生了一个易于实施的程序,便于该方法的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验