Ichikawa Yuichi, Kaufman Paul D
Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
Curr Genet. 2019 Apr;65(2):371-377. doi: 10.1007/s00294-018-0910-0. Epub 2018 Nov 26.
In eukaryotes, genomic DNA is packaged into the nucleus together with histone proteins, forming chromatin. The fundamental repeating unit of chromatin is the nucleosome, a naturally symmetric structure that wraps DNA and is the substrate for numerous regulatory post-translational modifications. However, the biological significance of nucleosomal symmetry until recently had been unexplored. To investigate this issue, we developed an obligate pair of histone H3 heterodimers, a novel genetic tool that allowed us to modulate modification sites on individual H3 molecules within nucleosomes in vivo. We used these constructs for molecular genetic studies, for example demonstrating that H3K36 methylation on a single H3 molecule per nucleosome in vivo is sufficient to restrain cryptic transcription. We also used asymmetric nucleosomes for mass spectrometric analysis of dependency relationships among histone modifications. Furthermore, we extended this system to the centromeric H3 isoform (Cse4/CENP-A), gaining insights into centromeric nucleosomal symmetry and structure. In this review, we summarize our findings and discuss the utility of this novel approach.
在真核生物中,基因组DNA与组蛋白一起被包装进细胞核,形成染色质。染色质的基本重复单元是核小体,它是一种自然对称的结构,包裹着DNA,并且是众多调控性翻译后修饰的底物。然而,直到最近,核小体对称性的生物学意义仍未得到探索。为了研究这个问题,我们开发了一对专一性的组蛋白H3异二聚体,这是一种新型的遗传工具,使我们能够在体内调节核小体中单个H3分子上的修饰位点。我们将这些构建体用于分子遗传学研究,例如证明在体内每个核小体中单个H3分子上的H3K36甲基化足以抑制隐匿转录。我们还使用不对称核小体对组蛋白修饰之间的依赖关系进行质谱分析。此外,我们将该系统扩展到着丝粒H3异构体(Cse4/CENP-A),从而深入了解着丝粒核小体的对称性和结构。在这篇综述中,我们总结了我们的发现,并讨论了这种新方法的实用性。