Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
Nat Commun. 2019 Feb 4;10(1):576. doi: 10.1038/s41467-019-08314-x.
Centromeric nucleosomes are composed of the centromere-specific histone H3 variant CENP-A and the core histones H2A, H2B, and H4. To establish a functional kinetochore, histone H4 lysine-20 (H4K20) must be monomethylated, but the underlying mechanism has remained enigmatic. To provide structural insights into H4K20 methylation, we here solve the crystal structure of a nucleosome containing an H3.1-CENP-A chimera, H3.1, which has a CENP-A centromere targeting domain and preserves essential CENP-A functions in vivo. Compared to the canonical H3.1 nucleosome, the H3.1 nucleosome exhibits conformational changes in the H4 N-terminal tail leading to a relocation of H4K20. In particular, the H4 N-terminal tail interacts with glutamine-76 and aspartate-77 of canonical H3.1 while these interactions are cancelled in the presence of the CENP-A-specific residues valine-76 and lysine-77. Mutations of valine-76 and lysine-77 impair H4K20 monomethylation both in vitro and in vivo. These findings suggest that a CENP-A-mediated structural polymorphism may explain the preferential H4K20 monomethylation in centromeric nucleosomes.
着丝粒核小体由着丝粒特异性组蛋白 H3 变体 CENP-A 和核心组蛋白 H2A、H2B 和 H4 组成。为了建立一个功能性的动粒,组蛋白 H4 赖氨酸-20(H4K20)必须被单甲基化,但潜在的机制仍然是个谜。为了提供对 H4K20 甲基化的结构见解,我们在此解决了含有 H3.1-CENP-A 嵌合体 H3.1 的核小体的晶体结构,H3.1 具有 CENP-A 着丝粒靶向结构域,并在体内保留了必需的 CENP-A 功能。与典型的 H3.1 核小体相比,H3.1 核小体在 H4 N 端尾部表现出构象变化,导致 H4K20 重新定位。特别是,H4 N 端尾部与典型 H3.1 的谷氨酰胺-76 和天冬氨酸-77 相互作用,而在存在 CENP-A 特异性残基缬氨酸-76 和赖氨酸-77 时,这些相互作用被取消。缬氨酸-76 和赖氨酸-77 的突变会损害体外和体内的 H4K20 单甲基化。这些发现表明,CENP-A 介导的结构多态性可能解释了着丝粒核小体中 H4K20 优先单甲基化的原因。