Suppr超能文献

使用单通道 EEG 和呼吸多导睡眠图信号自动识别睡眠和觉醒,用于诊断阻塞性睡眠呼吸暂停。

Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea.

机构信息

Recherche et Développement, CIDELEC, Angers, France.

Ecole Supérieure d'Electronique de l'Ouest, Angers, France.

出版信息

J Sleep Res. 2019 Apr;28(2):e12795. doi: 10.1111/jsr.12795. Epub 2018 Nov 26.

Abstract

Polysomnography (PSG) is necessary for the accurate estimation of total sleep time (TST) and the calculation of the apnea-hypopnea index (AHI). In type III home sleep apnea testing (HSAT), TST is overestimated because of the lack of electrophysiological sleep recordings. The aim of this study was to evaluate the accuracy and reliability of a novel automated sleep/wake scoring algorithm combining a single electroencephalogram (EEG) channel with actimetry and HSAT signals. The study included 160 patients investigated by PSG for suspected obstructive sleep apnea (OSA). Each PSG was recorded and scored manually using American Academy of Sleep Medicine (AASM) rules. The automatic sleep/wake-scoring algorithm was based on a single-channel EEG (FP2-A1) and the variability analysis of HSAT signals (airflow, snoring, actimetry, light and respiratory inductive plethysmography). Optimal detection thresholds were derived for each signal using a training set. Automatic and manual scorings were then compared epoch by epoch considering two states (sleep and wake). Cohen's kappa coefficient between the manual scoring and the proposed automatic algorithm was substantial, 0.74 ± 0.18, in separating wakefulness and sleep. The sensitivity, specificity and the positive and negative predictive values for the detection of wakefulness were 76.51% ± 21.67%, 95.48% ± 5.27%, 81.84% ± 15.42% and 93.85% ± 6.23% respectively. Compared with HSAT signals alone, AHI increased by 22.12% and 27 patients changed categories of OSA severity with the automatic sleep/wake-scoring algorithm. Automatic sleep/wake detection using a single-channel EEG combined with HSAT signals was a reliable method for TST estimation and improved AHI calculation compared with HSAT.

摘要

多导睡眠图(PSG)对于准确估计总睡眠时间(TST)和计算呼吸暂停低通气指数(AHI)是必要的。在 III 型家庭睡眠呼吸暂停测试(HSAT)中,由于缺乏电生理睡眠记录,TST 被高估。本研究旨在评估一种新的自动睡眠/觉醒评分算法的准确性和可靠性,该算法结合了单通道脑电图(EEG)和活动计以及 HSAT 信号。该研究纳入了 160 名因疑似阻塞性睡眠呼吸暂停(OSA)接受 PSG 检查的患者。每个 PSG 都进行了记录,并使用美国睡眠医学学会(AASM)规则进行手动评分。自动睡眠/觉醒评分算法基于单通道 EEG(FP2-A1)和 HSAT 信号的变异分析(气流、打鼾、活动计、光和呼吸感应容积描记法)。使用训练集为每个信号推导最佳检测阈值。然后,逐个时段比较自动和手动评分,考虑两种状态(睡眠和觉醒)。手动评分与提出的自动算法之间的 Cohen's kappa 系数为 0.74 ± 0.18,用于区分觉醒和睡眠,具有中等一致性。检测觉醒的敏感性、特异性以及阳性和阴性预测值分别为 76.51% ± 21.67%、95.48% ± 5.27%、81.84% ± 15.42%和 93.85% ± 6.23%。与 HSAT 信号单独相比,AHI 增加了 22.12%,27 名患者的 OSA 严重程度分类发生了变化。与 HSAT 相比,使用单通道 EEG 结合 HSAT 信号进行自动睡眠/觉醒检测是一种可靠的 TST 估计方法,并且可以改善 AHI 计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验