Suppr超能文献

利用机器学习验证基于电子健康记录的阻塞性睡眠呼吸暂停分类的有效性

Towards Validating the Effectiveness of Obstructive Sleep Apnea Classification from Electronic Health Records Using Machine Learning.

作者信息

Ramesh Jayroop, Keeran Niha, Sagahyroon Assim, Aloul Fadi

机构信息

Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates.

出版信息

Healthcare (Basel). 2021 Oct 27;9(11):1450. doi: 10.3390/healthcare9111450.

Abstract

Obstructive sleep apnea (OSA) is a common, chronic, sleep-related breathing disorder characterized by partial or complete airway obstruction in sleep. The gold standard diagnosis method is polysomnography, which estimates disease severity through the Apnea-Hypopnea Index (AHI). However, this is expensive and not widely accessible to the public. For effective screening, this work implements machine learning algorithms for classification of OSA. The model is trained with routinely acquired clinical data of 1479 records from the Wisconsin Sleep Cohort dataset. Extracted features from the electronic health records include patient demographics, laboratory blood reports, physical measurements, habitual sleep history, comorbidities, and general health questionnaire scores. For distinguishing between OSA and non-OSA patients, feature selection methods reveal the primary important predictors as waist-to-height ratio, waist circumference, neck circumference, body-mass index, lipid accumulation product, excessive daytime sleepiness, daily snoring frequency and snoring volume. Optimal hyperparameters were selected using a hybrid tuning method consisting of Bayesian Optimization and Genetic Algorithms through a five-fold cross-validation strategy. Support vector machines achieved the highest evaluation scores with accuracy: 68.06%, sensitivity: 88.76%, specificity: 40.74%, F1-score: 75.96%, PPV: 66.36% and NPV: 73.33%. We conclude that routine clinical data can be useful in prioritization of patient referral for further sleep studies.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种常见的慢性睡眠相关呼吸障碍,其特征是睡眠中气道部分或完全阻塞。金标准诊断方法是多导睡眠图,它通过呼吸暂停低通气指数(AHI)评估疾病严重程度。然而,这一方法成本高昂,公众难以广泛使用。为了进行有效筛查,本研究采用机器学习算法对OSA进行分类。该模型使用来自威斯康星睡眠队列数据集的1479条记录的常规临床数据进行训练。从电子健康记录中提取的特征包括患者人口统计学信息、实验室血液报告、身体测量数据、习惯性睡眠史、合并症以及一般健康问卷得分。为了区分OSA患者和非OSA患者,特征选择方法揭示了主要的重要预测因素,如腰高比、腰围、颈围、体重指数、脂质积聚产物、日间过度嗜睡、每日打鼾频率和打鼾音量。通过五折交叉验证策略,使用由贝叶斯优化和遗传算法组成的混合调优方法选择了最佳超参数。支持向量机获得了最高的评估分数,准确率为68.06%,灵敏度为88.76%,特异性为40.74%,F1分数为75.96%,阳性预测值为66.36%,阴性预测值为73.33%。我们得出结论,常规临床数据有助于优先安排患者转诊以进行进一步的睡眠研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f517/8622500/ddf63dfdeaf0/healthcare-09-01450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验