a Prince Naif Health Research Center , King Saud University , Riyadh , Saudi Arabia.
b Department of Clinical Lab Sciences , College of Applied Medical Sciences, King Saud University , Riyadh , Saudi Arabia.
Toxicol Mech Methods. 2019 May;29(4):233-243. doi: 10.1080/15376516.2018.1540674. Epub 2019 Feb 18.
The current study evaluated in vitro and in vivo toxicity of carboxyl or amine polyethylene glycol (PEG) surface functionalization of single-walled carbon nanotubes (SWCNTs). Assessments of cytotoxicity, genotoxicity, immunotoxicity, and oxidative stress were performed in vitro and in vivo (in a 1-month follow-up study). The SWCNT biodistribution was investigated using noninvasive magnetic resonance imaging (MRI). Results confirmed the enhanced biocompatibility of PEG-functionalized SWCNTs compared to non-functionalized materials with significant decreases (p < 0.05) in the percentage of cell viability and increases in ROS generation, mitochondrial membrane potential, cell apoptosis, oxidative stress generation, and oxidative DNA damage in vitro. PEG-functionalized SWCNTs with amine terminals were found to induce prominent increases in ROS generation, mitochondrial membrane potential, and oxidative stress compared to carboxy functionalization. No significant difference in the biodistribution of either functionalized SWCNTs was observed in MRI. In vivo assessments revealed a statistically significant increase (p < 0.05) in oxidative stress as early as 24 h in serum and liver; however, all values normalized at 2 weeks' investigation time point. DNA damage was minimal with either PEG-COOH or PEG-NH functionalized SWCNTs after 2 weeks' exposure. The negatively charged SWCNTs caused lesser DNA damage compared to positively charged samples. Carboxy-functionalized SWCNTs did not cause substantial changes in inflammatory mediators and were found to be significantly safer than non-functionalized SWCNTs and may pave the way for novel biomedical applications in cancer diagnosis and therapy.
本研究评估了羧基或胺聚乙二醇(PEG)对单壁碳纳米管(SWCNT)表面功能化的体外和体内毒性。在体外和体内(为期 1 个月的随访研究)评估了细胞毒性、遗传毒性、免疫毒性和氧化应激。使用非侵入性磁共振成像(MRI)研究了 SWCNT 的生物分布。结果证实,与未功能化的材料相比,PEG 功能化的 SWCNT 具有更高的生物相容性,细胞活力百分比显著降低(p<0.05),ROS 生成、线粒体膜电位、细胞凋亡、氧化应激生成和氧化 DNA 损伤增加。与羧基功能化相比,具有胺端的 PEG 功能化 SWCNT 诱导的 ROS 生成、线粒体膜电位和氧化应激增加更为明显。MRI 未观察到任何一种功能化 SWCNT 生物分布的显著差异。体内评估显示,血清和肝脏中的氧化应激在 24 小时内就出现了统计学上的显著增加(p<0.05);然而,所有值在 2 周的研究时间点都恢复正常。在 2 周的暴露后,PEG-COOH 或 PEG-NH 功能化的 SWCNT 引起的 DNA 损伤最小。带负电荷的 SWCNT 引起的 DNA 损伤比带正电荷的样品少。与非功能化的 SWCNT 相比,羧基功能化的 SWCNT 不会引起炎症介质的显著变化,并且被认为明显更安全,可能为癌症诊断和治疗中的新型生物医学应用铺平道路。