Suppr超能文献

血浆类固醇代谢组学分析在肾上腺皮质癌诊断中的应用。

Plasma steroid metabolome profiling for the diagnosis of adrenocortical carcinoma.

机构信息

Division of Endocrinology/Diabetology and Core Unit Clinical Mass Spectrometry, Department of Internal Medicine I, University Hospital Würzburg.

Department of Bioinformatics, Biocenter, University of Würzburg.

出版信息

Eur J Endocrinol. 2019 Feb 1;180(2):117-125. doi: 10.1530/EJE-18-0782.

Abstract

Objective Current workup for the pre-operative distinction between frequent adrenocortical adenomas (ACAs) and rare but aggressive adrenocortical carcinomas (ACCs) combines imaging and biochemical testing. We here investigated the potential of plasma steroid hormone profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the diagnosis of malignancy in adrenocortical tumors. Design Retrospective cohort study of prospectively collected EDTA-plasma samples in a single tertiary reference center. Methods Steroid hormone profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS) in random plasma samples and logistic regression modeling. Results Fifteen steroid hormones were quantified in 66 ACAs (29 males; M) and 42 ACC (15 M) plasma samples. Significantly higher abundances in ACC vs ACA were observed for 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, 11-deoxycortisol, DHEA, DHEAS and estradiol (all P < 0.05). Maximal areas under the curve (AUC) for discrimination between ACA and ACC for single analytes were only 0.76 (estradiol) and 0.77 (progesterone), respectively. Logistic regression modeling enabled the discovery of diagnostic signatures composed of six specific steroids for male and female patients with AUC of 0.95 and 0.94, respectively. Positive predictive values in males and females were 92 and 96%, negative predictive values 90 and 86%, respectively. Conclusion This study in a large adrenal tumor patient cohort demonstrates the value of plasma steroid hormone profiling for diagnosis of ACC. Application of LC-MS/MS analysis and of our model may facilitate diagnosis of malignancy in non-expert centers. We propose to continuously evaluate and improve diagnostic accuracy of LC-MS/MS profiling by applying machine-learning algorithms to prospectively obtained steroid hormone profiles.

摘要

目的

目前,术前区分常见的肾上腺皮质腺瘤(ACAs)和罕见但侵袭性的肾上腺皮质癌(ACC)的方法结合了影像学和生化检测。我们在此研究了通过液相色谱串联质谱(LC-MS/MS)对肾上腺皮质肿瘤恶性肿瘤进行诊断的血浆类固醇激素分析的潜力。

设计

在一个单一的三级参考中心进行前瞻性收集 EDTA 血浆样本的回顾性队列研究。

方法

通过液相色谱串联质谱(LC-MS/MS)对随机血浆样本进行类固醇激素分析和逻辑回归建模。

结果

在 66 例 ACAs(29 例男性;M)和 42 例 ACC(15 例男性;M)的血浆样本中定量了 15 种类固醇激素。与 ACA 相比,ACC 中 11-脱氧皮质酮、孕酮、17-羟孕酮、11-脱氧皮质醇、DHEA、DHEAS 和雌二醇的丰度明显更高(均 P < 0.05)。用于区分 ACA 和 ACC 的单个分析物的最大曲线下面积(AUC)仅分别为 0.76(雌二醇)和 0.77(孕酮)。逻辑回归建模能够发现由 6 种特定类固醇组成的诊断特征,用于男性和女性患者的 AUC 分别为 0.95 和 0.94。男性和女性的阳性预测值分别为 92%和 96%,阴性预测值分别为 90%和 86%。

结论

本研究在大型肾上腺肿瘤患者队列中证明了血浆类固醇激素分析在 ACC 诊断中的价值。LC-MS/MS 分析和我们的模型的应用可能有助于非专家中心恶性肿瘤的诊断。我们建议通过将机器学习算法应用于前瞻性获得的类固醇激素谱,不断评估和提高 LC-MS/MS 分析的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验