Vogg Nora, Müller Tobias, Floren Andreas, Dandekar Thomas, Riester Anna, Dischinger Ulrich, Kurlbaum Max, Kroiss Matthias, Fassnacht Martin
Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Germany; Central Laboratory, Core Unit Clinical Mass Spectrometry, University Hospital Würzburg, Germany.
Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, Germany.
Clin Chim Acta. 2023 Mar 15;543:117301. doi: 10.1016/j.cca.2023.117301. Epub 2023 Mar 21.
Preoperative identification of malignant adrenal tumors is challenging. 24-h urinary steroid profiling by LC-MS/MS and machine learning has demonstrated high diagnostic power, but the unavailability of bioinformatic models for public use has limited its routine application. We here aimed to increase usability with a novel classification model for the differentiation of adrenocortical adenoma (ACA) and adrenocortical carcinoma (ACC).
Eleven steroids (5-pregnenetriol, dehydroepiandrosterone, cortisone, cortisol, α-cortolone, tetrahydro-11-deoxycortisol, etiocholanolone, pregnenolone, pregnanetriol, pregnanediol, and 5-pregnenediol) were quantified by LC-MS/MS in 24-h urine samples from 352 patients with adrenal tumor (281 ACA, 71 ACC). Random forest modelling and decision tree algorithms were applied in training (n = 188) and test sets (n = 80) and independently validated in 84 patients with paired 24-h and spot urine.
After examining different models, a decision tree using excretions of only 5-pregnenetriol and tetrahydro-11-deoxycortisol classified three groups with low, intermediate, and high risk for malignancy. 148/217 ACA were classified as being at low, 67 intermediate, and 2 high risk of malignancy. Conversely, none of the ACC demonstrated a low-risk profile leading to a negative predictive value of 100% for malignancy. In the independent validation cohort, the negative predictive value was again 100% in both 24-h urine and spot urine with a positive predictive value of 87.5% and 86.7%, respectively.
This simplified LC-MS/MS-based classification model using 24-h-urine provided excellent results for exclusion of ACC and can help to avoid unnecessary surgeries. Analysis of spot urine led to similarly satisfactory results suggesting that cumbersome 24-h urine collection might be dispensable after future validation.
术前鉴别肾上腺恶性肿瘤具有挑战性。通过液相色谱-串联质谱(LC-MS/MS)和机器学习进行的24小时尿类固醇谱分析已显示出较高的诊断能力,但可供公众使用的生物信息学模型的缺乏限制了其常规应用。我们的目的是通过一种用于鉴别肾上腺皮质腺瘤(ACA)和肾上腺皮质癌(ACC)的新型分类模型来提高其可用性。
通过LC-MS/MS对352例肾上腺肿瘤患者(281例ACA,71例ACC)的24小时尿液样本中的11种类固醇(5-孕三醇、脱氢表雄酮、可的松、皮质醇、α-皮质酮、四氢-11-脱氧皮质醇、本胆烷醇酮、孕烯醇酮、孕三醇、孕二醇和5-孕烯二醇)进行定量。随机森林建模和决策树算法应用于训练集(n = 188)和测试集(n = 80),并在84例有配对24小时尿和随机尿的患者中进行独立验证。
在检查了不同模型后,一个仅使用5-孕三醇和四氢-11-脱氧皮质醇排泄量的决策树将患者分为低、中、高恶性风险三组。148/217例ACA被分类为低恶性风险,67例为中恶性风险,2例为高恶性风险。相反,没有一例ACC表现为低风险特征,导致恶性肿瘤的阴性预测值为100%。在独立验证队列中,24小时尿和随机尿的阴性预测值再次均为100%,阳性预测值分别为87.5%和86.7%。
这种基于LC-MS/MS的简化24小时尿分类模型在排除ACC方面取得了优异结果,有助于避免不必要的手术。随机尿分析也得出了类似令人满意的结果,这表明在未来验证后,繁琐的24小时尿液收集可能是不必要的。