Suppr超能文献

FBXL3 中的双等位基因突变可导致智力残疾、运动发育迟缓及身材矮小。

Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature.

机构信息

Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.

Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.

出版信息

Hum Mol Genet. 2019 Mar 15;28(6):972-979. doi: 10.1093/hmg/ddy406.

Abstract

FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.

摘要

FBXL3(F-Box 和亮氨酸丰富重复蛋白 3)编码一种含有 F 盒和几个串联亮氨酸丰富重复(LRR)结构域的蛋白质。FBXL3 是 SCF(Skp1-Cullin-F 盒蛋白)泛素连接酶复合物的一部分,该复合物结合并导致中央生物钟蛋白隐花色素(CRY1 和 CRY2)通过蛋白酶体进行磷酸化依赖性降解,其缺失会导致小鼠的昼夜节律表型和行为问题。在人类中尚未描述与 FBXL3 相关的表型。通过外显子组测序和纯合性作图的组合,我们分析了两个有智力障碍的近亲家庭,并在 FBXL3 中鉴定出纯合功能丧失(LoF)变异。在第一个来自巴基斯坦的家庭中,一个 FBXL3 移码变异 [NM_012158.2:c.885delT:p.(Leu295Phefs25)] 是两个家系环中五个受影响个体中的唯一分离变异(LOD 评分:3.12)。在第二个来自黎巴嫩的家庭中,我们鉴定出一个无义变异 [NM_012158.2:c.445C>T:p.(Arg149)]。在来自意大利的第三位患者中,在纯合状态下鉴定出一种可能的有害非同义变异 [NM_012158.2:c.1072T>C:p.(Cys358Arg)]。3D 蛋白建模预测,Cys358Arg 变化通过破坏 FBXL3 的结构来影响与 CRY2 的结合,这表明该变体也很可能是 LoF。来自三个家庭的 8 名受影响个体表现出相似的表型,包括智力障碍、发育迟缓、身材矮小和轻度面部畸形,主要是大鼻子,尖端呈球状。表型相似性和分离分析表明,FBXL3 双等位基因、LoF 变异将该基因与综合征常染色体隐性发育迟缓/智力障碍联系起来。

相似文献

5
Substrate binding promotes formation of the Skp1-Cul1-Fbxl3 (SCF(Fbxl3)) protein complex.
J Biol Chem. 2013 Nov 8;288(45):32766-32776. doi: 10.1074/jbc.M113.511303. Epub 2013 Sep 30.
6
Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature.
Am J Hum Genet. 2019 Nov 7;105(5):907-920. doi: 10.1016/j.ajhg.2019.09.013. Epub 2019 Oct 10.
8
The missing "link": an autosomal recessive short stature syndrome caused by a hypofunctional XYLT1 mutation.
Hum Genet. 2014 Jan;133(1):29-39. doi: 10.1007/s00439-013-1351-y. Epub 2013 Aug 27.
9
De Novo and Inherited Pathogenic Variants in KDM3B Cause Intellectual Disability, Short Stature, and Facial Dysmorphism.
Am J Hum Genet. 2019 Apr 4;104(4):758-766. doi: 10.1016/j.ajhg.2019.02.023. Epub 2019 Mar 28.

引用本文的文献

1
The ubiquitin-proteasome system in circadian regulation.
Front Neurosci. 2025 Aug 26;19:1632905. doi: 10.3389/fnins.2025.1632905. eCollection 2025.
2
Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders.
Biomedicines. 2025 Mar 28;13(4):810. doi: 10.3390/biomedicines13040810.
3
Clinical genomics expands the link between erroneous cell division, primary microcephaly and intellectual disability.
Neurogenetics. 2024 Jul;25(3):179-191. doi: 10.1007/s10048-024-00759-7. Epub 2024 May 25.
4
Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy.
Mol Neurobiol. 2022 Aug;59(8):4730-4746. doi: 10.1007/s12035-022-02878-4. Epub 2022 May 23.
5
Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome.
Am J Hum Genet. 2022 Apr 7;109(4):601-617. doi: 10.1016/j.ajhg.2022.03.002.
6
Hnrnpul1 controls transcription, splicing, and modulates skeletal and limb development in vivo.
G3 (Bethesda). 2022 May 6;12(5). doi: 10.1093/g3journal/jkac067.
8
Defective protein degradation in genetic disorders.
Biochim Biophys Acta Mol Basis Dis. 2022 May 1;1868(5):166366. doi: 10.1016/j.bbadis.2022.166366. Epub 2022 Feb 11.
9
De novo missense variants in FBXO11 alter its protein expression and subcellular localization.
Hum Mol Genet. 2022 Feb 3;31(3):440-454. doi: 10.1093/hmg/ddab265.
10
De Novo KAT5 Variants Cause a Syndrome with Recognizable Facial Dysmorphisms, Cerebellar Atrophy, Sleep Disturbance, and Epilepsy.
Am J Hum Genet. 2020 Sep 3;107(3):564-574. doi: 10.1016/j.ajhg.2020.08.002. Epub 2020 Aug 20.

本文引用的文献

1
Bi-allelic Loss-of-Function Variants in DNMBP Cause Infantile Cataracts.
Am J Hum Genet. 2018 Oct 4;103(4):568-578. doi: 10.1016/j.ajhg.2018.09.004.
2
Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3.
Hum Mol Genet. 2018 Aug 1;27(15):2703-2711. doi: 10.1093/hmg/ddy180.
4
Expanding the genetic heterogeneity of intellectual disability.
Hum Genet. 2017 Nov;136(11-12):1419-1429. doi: 10.1007/s00439-017-1843-2. Epub 2017 Sep 22.
6
PPARD is an Inhibitor of Cartilage Growth in External Ears.
Int J Biol Sci. 2017 May 16;13(5):669-681. doi: 10.7150/ijbs.19714. eCollection 2017.
7
Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation.
Cell. 2016 Aug 25;166(5):1198-1214.e24. doi: 10.1016/j.cell.2016.07.027.
8
Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.
Mol Psychiatry. 2017 Nov;22(11):1604-1614. doi: 10.1038/mp.2016.109. Epub 2016 Jul 26.
9
Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield.
Mol Psychiatry. 2017 Apr;22(4):615-624. doi: 10.1038/mp.2016.113. Epub 2016 Jul 19.
10
Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia.
Am J Hum Genet. 2016 Apr 7;98(4):615-26. doi: 10.1016/j.ajhg.2016.02.007. Epub 2016 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验