Xing Xiangyou, Xu Chen, Chen Bo, Li Chengcheng, Virgil Scott C, Grubbs Robert H
Shenzhen Grubbs Institute , Southern University of Science and Technology (SUSTech) , Shenzhen , 518055 , China.
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.
J Am Chem Soc. 2018 Dec 19;140(50):17782-17789. doi: 10.1021/jacs.8b11667. Epub 2018 Dec 7.
Nitrile hydration provides access to amides that are indispensable to researchers in chemical and pharmaceutical industries. Prohibiting the use of this venerable reaction, however, are (1) the dearth of biphasic catalysts that can effectively hydrate nitriles at ambient temperatures with high turnover numbers and (2) the unsolved challenge of hydrating cyanohydrins. Herein, we report the design of new " donor-acceptor"-type platinum catalysts by precisely arranging electron-rich and electron-deficient ligands trans to one other, thereby enhancing both the nucleophilicity of the hydroxyl group and the electrophilicity of the nitrile group. Leveraging a high-throughput, automated workflow and evaluating a library of bidentate ligands, we have discovered that commercially available, inexpensive DPPF [1,1'-ferrocenendiyl-bis(diphenylphosphine)] provides superior reactivity. The corresponding " donor-acceptor"-type catalyst 2a is readily prepared from (DPPF)PtCl, PMeOH, and AgOTf. The enhanced activity of 2a permits the hydration of a wide range of nitriles and cyanohydrins to proceed at 40 °C with excellent turnover numbers. Rational reevaluation of the ligand structure has led to the discovery of modified catalyst 2c, harboring the more electron-rich 1,1'-bis[bis(5-methyl-2-furanyl)phosphino] ferrocene ligand, which demonstrates the highest activity toward hydration of nitriles and cyanohydrins at room temperature. Finally, the correlation between the electron-donating ability of the phosphine ligands with catalyst efficiencies of 2a, 2c, 2d, and 2e in the hydration of nitrile 7 are examined, and the results support the " donor-acceptor" hypothesis.
腈水合反应为化学和制药行业的研究人员提供了获取酰胺的途径,而酰胺是这些行业中不可或缺的。然而,禁止使用这种古老反应的因素有两个:一是缺乏能在环境温度下以高周转数有效使腈水合的双相催化剂;二是氰醇水合这一未解决的挑战。在此,我们报告了新型“供体-受体”型铂催化剂的设计,通过将富电子和缺电子配体彼此反式精确排列,从而增强羟基的亲核性和腈基的亲电性。利用高通量自动化工作流程并评估一系列双齿配体库,我们发现市售的廉价DPPF [1,1'-二茂铁二基-双(二苯基膦)] 具有卓越的反应活性。相应的“供体-受体”型催化剂2a可由 (DPPF)PtCl、PMeOH和AgOTf轻松制备。2a增强的活性使多种腈和氰醇能在40°C下以优异的周转数进行水合反应。对配体结构进行合理重新评估后发现了改性催化剂2c,其含有电子更丰富的1,1'-双[双(5-甲基-2-呋喃基)膦基]二茂铁配体,该催化剂在室温下对腈和氰醇的水合反应表现出最高活性。最后,研究了膦配体的给电子能力与2a、2c、2d和2e在腈7水合反应中的催化效率之间的相关性,结果支持了“供体-受体”假说。