The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China.
Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA.
Curr Biol. 2018 Dec 3;28(23):3840-3849.e6. doi: 10.1016/j.cub.2018.09.019. Epub 2018 Oct 25.
No other species attracts more international resources, public attention, and protracted controversies over its intraspecific taxonomy than the tiger (Panthera tigris) [1, 2]. Today, fewer than 4,000 free-ranging tigers survive, covering only 7% of their historical range, and debates persist over whether they comprise six, five, or two subspecies [3-6]. The lack of consensus over the number of tiger subspecies has partially hindered the global effort to recover the species from the brink of extinction, as both captive breeding and landscape intervention of wild populations increasingly require an explicit delineation of the conservation management units [7]. The recent coalescence to a late Pleistocene bottleneck (circa 110 kya) [5, 8, 9] poses challenges for detecting tiger subspecific morphological traits, suggesting that elucidating intraspecific evolution in the tiger requires analyses at the genomic scale. Here, we present whole-genome sequencing analyses from 32 voucher specimens that resolve six statistically robust monophyletic clades corresponding to extant subspecies, including the recently recognized Malayan tiger (P. tigris jacksoni). The intersubspecies gene flow is very low, corroborating the recognized phylogeographic units. We identified multiple genomic regions that are candidates for identifying the adaptive divergence of subspecies. The body-size-related gene ADH7 appears to have been strongly selected in the Sumatran tiger, perhaps in association with adaptation to the tropical Sunda Islands. The identified genomic signatures provide a solid basis for recognizing appropriate conservation management units in the tiger and can benefit global conservation strategic planning for this charismatic megafauna icon.
没有其他物种像老虎(Panthera tigris)一样,吸引了更多的国际资源、公众关注和长期的分类学争议[1,2]。如今,野生老虎的数量已不足 4000 只,仅覆盖了其历史分布范围的 7%,而且关于老虎亚种的数量仍存在争议,有人认为有六个亚种,也有人认为有五个或两个亚种[3-6]。由于缺乏对老虎亚种数量的共识,部分阻碍了全球从灭绝边缘拯救该物种的努力,因为圈养繁殖和野生种群的景观干预越来越需要明确保护管理单位的划分[7]。最近的晚更新世瓶颈期(约 11 万年前)[5,8,9]的融合,对检测老虎亚种形态特征提出了挑战,这表明阐明老虎的种内进化需要在基因组尺度上进行分析。在这里,我们展示了来自 32 个凭证标本的全基因组测序分析结果,这些分析结果确定了六个统计学上稳健的单系分支,与现存亚种相对应,包括最近被确认的马来亚虎(P. tigris jacksoni)。亚种间的基因流非常低,这与公认的地理分化单元相吻合。我们鉴定了多个候选基因座,这些基因座可能与亚种的适应性分化有关。与体型相关的基因 ADH7 似乎在苏门答腊虎中受到了强烈的选择,这可能与适应热带巽他群岛有关。鉴定出的基因组特征为识别老虎的适当保护管理单位提供了坚实的基础,并有助于为这种魅力非凡的巨型动物图标制定全球保护战略规划。