Suppr超能文献

灵长类大脑中用于分层预测和预测误差的大规模皮质网络。

Large-Scale Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate Brain.

机构信息

Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto 6068501, Japan; RIKEN Brain Science Institute, Wako, Saitama 3510198, Japan.

RIKEN Brain Science Institute, Wako, Saitama 3510198, Japan.

出版信息

Neuron. 2018 Dec 5;100(5):1252-1266.e3. doi: 10.1016/j.neuron.2018.10.004. Epub 2018 Oct 25.

Abstract

According to predictive-coding theory, cortical areas continuously generate and update predictions of sensory inputs at different hierarchical levels and emit prediction errors when the predicted and actual inputs differ. However, predictions and prediction errors are simultaneous and interdependent processes, making it difficult to disentangle their constituent neural network organization. Here, we test the theory by using high-density electrocorticography (ECoG) in monkeys during an auditory "local-global" paradigm in which the temporal regularities of the stimuli were controlled at two hierarchical levels. We decomposed the broadband data and identified lower- and higher-level prediction-error signals in early auditory cortex and anterior temporal cortex, respectively, and a prediction-update signal sent from prefrontal cortex back to temporal cortex. The prediction-error and prediction-update signals were transmitted via γ (>40 Hz) and α/β (<30 Hz) oscillations, respectively. Our findings provide strong support for hierarchical predictive coding and outline how it is dynamically implemented using distinct cortical areas and frequencies.

摘要

根据预测编码理论,皮质区域在不同的层次上不断生成和更新对感觉输入的预测,并在预测输入和实际输入不同时发出预测误差。然而,预测和预测误差是同时发生且相互依存的过程,因此很难将它们的组成神经网络组织分开。在这里,我们在猴子的高分辨率皮层电图(ECoG)中测试了该理论,在该理论中,使用了听觉“局部-全局”范式,该范式在两个层次上控制了刺激的时间规律性。我们对宽带数据进行了分解,并分别在早期听觉皮层和前颞叶皮层中识别出较低和较高层次的预测误差信号,以及从前额叶皮层发送回颞叶皮层的预测更新信号。预测误差和预测更新信号分别通过γ(>40 Hz)和α/β(<30 Hz)振荡来传输。我们的发现为分层预测编码提供了强有力的支持,并概述了它如何使用不同的皮层区域和频率动态实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验