Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom WC1N 3BG,
Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom OX3 7JX.
J Neurosci. 2018 Oct 3;38(40):8680-8693. doi: 10.1523/JNEUROSCI.0369-18.2018. Epub 2018 Aug 24.
Using predictions based on environmental regularities is fundamental for adaptive behavior. While it is widely accepted that predictions across different stimulus attributes (e.g., time and content) facilitate sensory processing, it is unknown whether predictions across these attributes rely on the same neural mechanism. Here, to elucidate the neural mechanisms of predictions, we combine invasive electrophysiological recordings (human electrocorticography in 4 females and 2 males) with computational modeling while manipulating predictions about content ("what") and time ("when"). We found that "when" predictions increased evoked activity over motor and prefrontal regions both at early (∼180 ms) and late (430-450 ms) latencies. "What" predictability, however, increased evoked activity only over prefrontal areas late in time (420-460 ms). Beyond these dissociable influences, we found that "what" and "when" predictability interactively modulated the amplitude of early (165 ms) evoked responses in the superior temporal gyrus. We modeled the observed neural responses using biophysically realistic neural mass models, to better understand whether "what" and "when" predictions tap into similar or different neurophysiological mechanisms. Our modeling results suggest that "what" and "when" predictability rely on complementary neural processes: "what" predictions increased short-term plasticity in auditory areas, whereas "when" predictability increased synaptic gain in motor areas. Thus, content and temporal predictions engage complementary neural mechanisms in different regions, suggesting domain-specific prediction signaling along the cortical hierarchy. Encoding predictions through different mechanisms may endow the brain with the flexibility to efficiently signal different sources of predictions, weight them by their reliability, and allow for their encoding without mutual interference. Predictions of different stimulus features facilitate sensory processing. However, it is unclear whether predictions of different attributes rely on similar or different neural mechanisms. By combining invasive electrophysiological recordings of cortical activity with experimental manipulations of participants' predictions about content and time of acoustic events, we found that the two types of predictions had dissociable influences on cortical activity, both in terms of the regions involved and the timing of the observed effects. Further, our biophysical modeling analysis suggests that predictability of content and time rely on complementary neural processes: short-term plasticity in auditory areas and synaptic gain in motor areas, respectively. This suggests that predictions of different features are encoded with complementary neural mechanisms in different brain regions.
利用基于环境规律的预测对于适应行为至关重要。虽然人们普遍认为,对不同刺激属性(例如时间和内容)的预测有助于感觉处理,但尚不清楚这些属性之间的预测是否依赖于相同的神经机制。在这里,为了阐明预测的神经机制,我们结合了侵入性脑电记录(4 名女性和 2 名男性的人类皮层电图)和计算模型,同时操纵了关于内容(“什么”)和时间(“何时”)的预测。我们发现,“何时”预测会增加运动和前额叶区域的诱发活动,潜伏期较早(约 180 毫秒)和晚期(430-450 毫秒)。然而,“什么”可预测性仅在时间较晚(420-460 毫秒)时增加前额叶区域的诱发活动。除了这些可分离的影响之外,我们还发现“什么”和“何时”的可预测性会以交互方式调制上颞叶中早期(165 毫秒)诱发反应的幅度。我们使用生物物理上逼真的神经群模型来模拟观察到的神经反应,以更好地了解“什么”和“何时”的预测是否利用了相似或不同的神经生理机制。我们的建模结果表明,“什么”和“何时”的可预测性依赖于互补的神经过程:“什么”的预测增加了听觉区域的短期可塑性,而“何时”的预测增加了运动区域的突触增益。因此,内容和时间预测在不同区域中涉及互补的神经机制,这表明沿着皮质层次结构存在特定于域的预测信号。通过不同的机制对预测进行编码可能使大脑具有灵活的能力,可以有效地对不同来源的预测进行信号传输,根据其可靠性对其进行加权,并在不相互干扰的情况下对其进行编码。不同刺激特征的预测有助于感觉处理。然而,尚不清楚不同属性的预测是否依赖于相似或不同的神经机制。通过结合皮质活动的侵入性脑电记录以及对参与者关于声事件内容和时间的预测的实验操纵,我们发现这两种类型的预测对皮质活动都有可分离的影响,无论是涉及的区域还是观察到的效应的时间。此外,我们的生物物理建模分析表明,内容和时间的可预测性依赖于互补的神经过程:听觉区域的短期可塑性和运动区域的突触增益。这表明,不同特征的预测是以互补的神经机制在不同的大脑区域进行编码的。