Fuhrer Julian, Glette Kyrre, Ivanovic Jugoslav, Larsson Pål Gunnar, Bekinschtein Tristan, Kochen Silvia, Knight Robert T, Tørresen Jim, Solbakk Anne-Kristin, Endestad Tor, Blenkmann Alejandro
RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway.
Department of Informatics, University of Oslo, Oslo, Norway.
Sci Rep. 2025 Apr 27;15(1):14725. doi: 10.1038/s41598-025-98865-5.
The brain excels at processing sensory input, even in rich or chaotic environments. Mounting evidence attributes this to sophisticated internal models of the environment that draw on statistical structures in the unfolding sensory input. Understanding how and where such modeling proceeds is a core question in statistical learning and predictive processing. In this context, we address the role of transitional probabilities as an implicit structure supporting the encoding of the temporal structure of a random auditory stream. Leveraging information-theoretical principles and the high spatiotemporal resolution of intracranial electroencephalography, we analyzed the trial-by-trial high-frequency activity representation of transitional probabilities. This unique approach enabled us to demonstrate how the brain automatically and continuously encodes structure in random stimuli and revealed the involvement of a network outside of the auditory system, including hippocampal, frontal, and temporal regions. Our work provides a comprehensive picture of the neural correlates of automatic encoding of implicit structure that can be the crucial substrate for the swift detection of patterns and unexpected events in the environment.
大脑擅长处理感官输入,即使是在丰富或混乱的环境中。越来越多的证据将此归因于复杂的环境内部模型,这些模型利用不断展开的感官输入中的统计结构。理解这种建模如何以及在何处进行是统计学习和预测处理中的一个核心问题。在此背景下,我们探讨了过渡概率作为一种隐性结构在支持对随机听觉流的时间结构进行编码方面的作用。利用信息论原理和颅内脑电图的高时空分辨率,我们分析了逐次试验中过渡概率的高频活动表征。这种独特的方法使我们能够证明大脑如何自动且持续地对随机刺激中的结构进行编码,并揭示了听觉系统之外的一个网络的参与,包括海马体、额叶和颞叶区域。我们的工作提供了一幅关于隐性结构自动编码的神经关联的全面图景,而这种隐性结构可能是在环境中快速检测模式和意外事件的关键基础。