Suppr超能文献

核糖体损伤促进致癌突变。

Ribosomal Lesions Promote Oncogenic Mutagenesis.

机构信息

Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, Leuven, Belgium.

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.

出版信息

Cancer Res. 2019 Jan 15;79(2):320-327. doi: 10.1158/0008-5472.CAN-18-1987. Epub 2018 Nov 27.

Abstract

Ribosomopathies are congenital disorders caused by mutations in ribosomal proteins (RP) or assembly factors and are characterized by cellular hypoproliferation at an early stage. Paradoxically, many of these disorders have an elevated risk to progress to hyperproliferative cancer at a later stage. In addition, somatic RP mutations have recently been identified in various cancer types, for example, the recurrent RPL10-R98S mutation in T-cell acute lymphoblastic leukemia (T-ALL) and RPS15 mutations in chronic lymphocytic leukemia (CLL). We previously showed that RPL10-R98S promotes expression of oncogenes, but also induces a proliferative defect due to elevated oxidative stress. In this study, we demonstrate that this proliferation defect is eventually rescued by RPL10-R98S mouse lymphoid cells that acquire 5-fold more secondary mutations than RPL10-WT cells. The presence of RPL10-R98S and other RP mutations also correlated with a higher mutational load in patients with T-ALL, with an enrichment in NOTCH1-activating lesions. RPL10-R98S-associated cellular oxidative stress promoted DNA damage and impaired cell growth. Expression of NOTCH1 eliminated these phenotypes in RPL10-R98S cells, in part via downregulation of PKC-θ, with no effect on RPL10-WT cells. Patients with RP-mutant CLL also demonstrated a higher mutational burden, enriched for mutations that may diminish oxidative stress. We propose that oxidative stress due to ribosome dysfunction causes hypoproliferation and cellular insufficiency in ribosomopathies and RP-mutant cancer. This drives surviving cells, potentiated by genomic instability, to acquire rescuing mutations, which ultimately promote transition to hyperproliferation. SIGNIFICANCE: Ribosomal lesions cause oxidative stress and increase mutagenesis, promoting acquisition of rescuing mutations that stimulate proliferation.

摘要

核糖体病是由核糖体蛋白 (RP) 或组装因子的突变引起的先天性疾病,其特征是早期细胞增殖减少。矛盾的是,许多此类疾病在后期进展为过度增殖性癌症的风险增加。此外,最近在各种癌症类型中发现了体细胞 RP 突变,例如 T 细胞急性淋巴细胞白血病 (T-ALL) 中反复出现的 RPL10-R98S 突变和慢性淋巴细胞白血病 (CLL) 中的 RPS15 突变。我们之前表明,RPL10-R98S 促进了癌基因的表达,但也由于氧化应激升高而导致增殖缺陷。在这项研究中,我们证明了这种增殖缺陷最终被 RPL10-R98S 小鼠淋巴细胞挽救,这些细胞获得的二次突变是 RPL10-WT 细胞的 5 倍。RPL10-R98S 和其他 RP 突变的存在也与 T-ALL 患者的更高突变负荷相关,NOTCH1 激活病变富集。RPL10-R98S 相关的细胞氧化应激促进了 DNA 损伤和细胞生长受损。NOTCH1 的表达消除了 RPL10-R98S 细胞中的这些表型,部分是通过下调 PKC-θ 实现的,对 RPL10-WT 细胞没有影响。具有 RP 突变的 CLL 患者也表现出更高的突变负担,富含可能减轻氧化应激的突变。我们提出,核糖体功能障碍引起的氧化应激导致核糖体病和 RP 突变癌症中的增殖减少和细胞功能不全。这会促使具有基因组不稳定性的存活细胞获得挽救突变,最终促进向过度增殖的转变。意义:核糖体损伤导致氧化应激增加和突变增加,促进了刺激增殖的挽救突变的获得。

相似文献

1
Ribosomal Lesions Promote Oncogenic Mutagenesis.
Cancer Res. 2019 Jan 15;79(2):320-327. doi: 10.1158/0008-5472.CAN-18-1987. Epub 2018 Nov 27.
2
The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL.
Leukemia. 2019 Feb;33(2):319-332. doi: 10.1038/s41375-018-0176-z. Epub 2018 Jun 21.
3
The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.
Leukemia. 2018 Mar;32(3):809-819. doi: 10.1038/leu.2017.225. Epub 2017 Jul 24.
4
The T-cell leukemia related rpl10-R98S mutant traps the 60S export adapter Nmd3 in the ribosomal P site in yeast.
PLoS Genet. 2017 Jul 17;13(7):e1006894. doi: 10.1371/journal.pgen.1006894. eCollection 2017 Jul.
5
Bypass of the pre-60S ribosomal quality control as a pathway to oncogenesis.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5640-5. doi: 10.1073/pnas.1400247111. Epub 2014 Mar 31.
8
Role of ribosomal protein mutations in tumor development (Review).
Int J Oncol. 2016 Apr;48(4):1313-24. doi: 10.3892/ijo.2016.3387. Epub 2016 Feb 9.
10
Exploitation of the ribosomal protein L10 R98S mutation to enhance recombinant protein production in mammalian cells.
Eng Life Sci. 2022 Jan 14;22(2):100-114. doi: 10.1002/elsc.202100124. eCollection 2022 Feb.

引用本文的文献

1
Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy.
Cancers (Basel). 2025 Jul 31;17(15):2534. doi: 10.3390/cancers17152534.
2
Ribosome specialization by cancer-associated ribosomal protein mutations: progress made and open questions.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 6;380(1921):20230380. doi: 10.1098/rstb.2023.0380.
3
Differential impacts of ribosomal protein haploinsufficiency on mitochondrial function.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202404084. Epub 2025 Jan 9.
4
The Beak of Eukaryotic Ribosomes: Life, Work and Miracles.
Biomolecules. 2024 Jul 22;14(7):882. doi: 10.3390/biom14070882.
6
Cytosolic Ribosomal Protein Haploinsufficiency affects Mitochondrial Morphology and Respiration.
bioRxiv. 2024 May 2:2024.04.16.589775. doi: 10.1101/2024.04.16.589775.
7
Integrated mutational landscape analysis of poorly differentiated high-grade neuroendocrine carcinoma of the uterine cervix.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2321898121. doi: 10.1073/pnas.2321898121. Epub 2024 Apr 16.
8
Decoding Ribosome Heterogeneity: A New Horizon in Cancer Therapy.
Biomedicines. 2024 Jan 11;12(1):155. doi: 10.3390/biomedicines12010155.
9
The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma.
Cell Death Dis. 2023 Jun 7;14(6):350. doi: 10.1038/s41419-023-05877-y.
10
RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing mA modification.
Signal Transduct Target Ther. 2023 Jun 2;8(1):224. doi: 10.1038/s41392-023-01428-1.

本文引用的文献

1
The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL.
Leukemia. 2019 Feb;33(2):319-332. doi: 10.1038/s41375-018-0176-z. Epub 2018 Jun 21.
2
Fanconi anaemia and cancer: an intricate relationship.
Nat Rev Cancer. 2018 Mar;18(3):168-185. doi: 10.1038/nrc.2017.116. Epub 2018 Jan 29.
3
Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center.
Nucleic Acids Res. 2018 Feb 28;46(4):1945-1957. doi: 10.1093/nar/gkx1308.
4
Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis.
Cancer Cell. 2017 Dec 11;32(6):869-883.e5. doi: 10.1016/j.ccell.2017.11.004.
5
Somatic mutations and clonal hematopoiesis in congenital neutropenia.
Blood. 2018 Jan 25;131(4):408-416. doi: 10.1182/blood-2017-08-801985. Epub 2017 Nov 1.
6
How Ribosomes Translate Cancer.
Cancer Discov. 2017 Oct;7(10):1069-1087. doi: 10.1158/2159-8290.CD-17-0550. Epub 2017 Sep 18.
7
Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers.
Mol Cancer Ther. 2017 Nov;16(11):2598-2608. doi: 10.1158/1535-7163.MCT-17-0386. Epub 2017 Aug 23.
8
The T-cell leukemia-associated ribosomal RPL10 R98S mutation enhances JAK-STAT signaling.
Leukemia. 2018 Mar;32(3):809-819. doi: 10.1038/leu.2017.225. Epub 2017 Jul 24.
9
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia.
Nat Genet. 2017 Aug;49(8):1211-1218. doi: 10.1038/ng.3909. Epub 2017 Jul 3.
10
Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia.
Cell Stem Cell. 2016 Nov 3;19(5):613-627. doi: 10.1016/j.stem.2016.08.021. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验