Welbio, Brussels, Belgium
de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
mBio. 2018 Nov 27;9(6):e01541-18. doi: 10.1128/mBio.01541-18.
Hypochlorous acid (bleach), an oxidizing compound produced by neutrophils, turns the chaperedoxin CnoX into a powerful holdase protecting its substrates from bleach-induced aggregation. CnoX is well conserved in bacteria, even in non-infectious species unlikely to encounter this oxidant, muddying the role of CnoX in these organisms. Here, we found that CnoX in the non-pathogenic aquatic bacterium functions as a holdase that efficiently protects 50 proteins from heat-induced aggregation. Remarkably, the chaperone activity of CnoX is constitutive. Like CnoX, CnoX transfers its substrates to DnaK/J/GrpE and GroEL/ES for refolding, indicating conservation of cooperation with GroEL/ES. Interestingly, CnoX exhibits thioredoxin oxidoreductase activity, by which it controls the redox state of 90 proteins. This function, which CnoX lacks, is likely welcome in a bacterium poorly equipped with antioxidant defenses. Thus, the redox and chaperone properties of CnoX chaperedoxins were fine-tuned during evolution to adapt these proteins to the specific needs of each species. How proteins are protected from stress-induced aggregation is a crucial question in biology and a long-standing mystery. While a long series of landmark studies have provided important contributions to our current understanding of the proteostasis network, key fundamental questions remain unsolved. In this study, we show that the intrinsic features of the chaperedoxin CnoX, a folding factor that combines chaperone and redox protective function, have been tailored during evolution to fit to the specific needs of their host. Whereas CnoX needs to be activated by bleach, a powerful oxidant produced by our immune system, its counterpart in , a bacterium living in bleach-free environments, is a constitutive chaperone. In addition, the redox properties of and CnoX also differ to best contribute to their respective cellular redox homeostasis. This work demonstrates how proteins from the same family have evolved to meet the needs of their hosts.
次氯酸(漂白剂)是中性粒细胞产生的一种氧化化合物,它将伴侣蛋白 CnoX 转化为一种强大的持留蛋白,保护其底物免受漂白剂诱导的聚集。CnoX 在细菌中得到很好的保守,即使在不太可能遇到这种氧化剂的非传染性物种中也是如此,这使得 CnoX 在这些生物体中的作用变得模糊不清。在这里,我们发现非致病性水生细菌中的 CnoX 作为一种持留蛋白,能够有效地保护 50 种蛋白质免受热诱导的聚集。值得注意的是,CnoX 的伴侣活性是组成型的。与 CnoX 一样,CnoX 将其底物转移到 DnaK/J/GrpE 和 GroEL/ES 进行重折叠,表明与 GroEL/ES 的合作得到了保守。有趣的是,CnoX 具有硫氧还蛋白氧化还原酶活性,通过该活性控制 90 种蛋白质的氧化还原状态。这种功能是 CnoX 所缺乏的,在一个抗氧化防御能力较差的细菌中可能是受欢迎的。因此,CnoX 伴侣氧化还原酶在进化过程中对其伴侣蛋白的氧化还原和伴侣功能进行了精细调节,以适应每种物种的特定需求。蛋白质如何免受应激诱导的聚集是生物学中的一个关键问题,也是一个长期存在的谜团。虽然一系列具有里程碑意义的研究为我们当前对蛋白质稳态网络的理解提供了重要贡献,但关键的基本问题仍未得到解决。在这项研究中,我们表明,伴侣氧化还原酶 CnoX 的内在特征,即结合伴侣和氧化还原保护功能的折叠因子,在进化过程中已经被调整,以适应其宿主的特定需求。虽然 CnoX 需要被我们免疫系统产生的强氧化剂漂白剂激活,但它在生活在无漂白剂环境中的细菌中的对应物是组成型伴侣。此外,和 CnoX 的氧化还原性质也不同,以最好地促进它们各自的细胞氧化还原稳态。这项工作表明,来自同一家族的蛋白质是如何进化以满足其宿主的需求的。