Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
Cell Mol Life Sci. 2019 Apr;76(7):1215-1242. doi: 10.1007/s00018-018-2973-y. Epub 2018 Nov 27.
Despite the extensive genetic and phenotypic variations present in the different tumors, they frequently share common metabolic alterations, such as autophagy. Autophagy is a self-degradative process in response to stresses by which damaged macromolecules and organelles are targeted by autophagic vesicles to lysosomes and then eliminated. It is known that autophagy dysfunctions can promote tumorigenesis and cancer development, but, interestingly, its overstimulation by cytotoxic drugs may also induce cell death and chemosensitivity. For this reason, the possibility to modulate autophagy may represent a valid therapeutic approach to treat different types of cancers and a variety of clinical trials, using autophagy modulators, are currently employed. On the other hand, recent progress in nanotechnology offers plenty of tools to fight cancer with innovative and efficient therapeutic agents by overcoming obstacles usually encountered with traditional drugs. Interestingly, nanomaterials can modulate autophagy and have been exploited as therapeutic agents against cancer. In this article, we summarize the most recent advances in the application of metallic nanostructures as potent modulators of autophagy process through multiple mechanisms, stressing their therapeutic implications in cancer diseases. For this reason, we believe that autophagy modulation with nanoparticle-based strategies would acquire clinical relevance in the near future, as a complementary therapy for the treatment of cancers and other diseases.
尽管不同肿瘤存在广泛的遗传和表型变异,但它们经常共享共同的代谢改变,如自噬。自噬是一种自我降解的过程,当受损的大分子和细胞器被自噬小泡靶向溶酶体并被消除时,就会发生这种反应。已知自噬功能障碍可促进肿瘤发生和癌症发展,但有趣的是,细胞毒性药物的过度刺激也可能诱导细胞死亡和化疗敏感性。因此,调节自噬的可能性可能代表治疗不同类型癌症的有效治疗方法,目前正在使用自噬调节剂进行多种临床试验。另一方面,纳米技术的最新进展为使用创新和有效的治疗剂对抗癌症提供了大量工具,克服了传统药物通常遇到的障碍。有趣的是,纳米材料可以调节自噬,并被用作抗癌治疗剂。本文总结了金属纳米结构作为自噬过程的有效调节剂的最新进展,通过多种机制强调了它们在癌症疾病中的治疗意义。因此,我们相信,基于纳米颗粒的策略的自噬调节将在不久的将来获得临床相关性,作为治疗癌症和其他疾病的补充疗法。
Cell Mol Life Sci. 2018-11-27
J Biochem Mol Toxicol. 2020-5
Curr Top Med Chem. 2018
Int J Nanomedicine. 2020-8-6
J Photochem Photobiol B. 2017-3-30
Cell Death Dis. 2013-5-2
Future Med Chem. 2015-8
Small Sci. 2025-4-11
Anticancer Agents Med Chem. 2025
Adv Sci (Weinh). 2025-2
Nat Rev Cardiol. 2025-2
Pharmaceuticals (Basel). 2024-5-15
Nanomedicine (Lond). 2018-8-28
Acta Biomater. 2018-8-19
ACS Appl Mater Interfaces. 2018-8-9
Phytother Res. 2018-7-24
J Nanobiotechnology. 2018-7-11