Suppr超能文献

用于预测金属和金属氧化物纳米材料抗肿瘤效果的可解释机器学习模型。

Interpretable machine learning models for predicting the antitumor effects of metal and metal oxide nanomaterials.

作者信息

Ma Youfu, Jiang Yu, Su Houlin, Lei Jiajia, Xiao Wenguang, Tian Haijun, Ma Yawei, Zhu Li, Liang Yuxi, Wang Lisheng, Yuan Mingqing, Liu Xu

机构信息

Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University Nanning 530004 China

出版信息

RSC Adv. 2025 Jun 3;15(21):17036-17048. doi: 10.1039/d5ra02309b. eCollection 2025 May 15.

Abstract

Understanding the toxic behavior of metal and metal oxide nanoparticles (M/MOx NPs) is essential for effective tumor diagnosis and treatment, yet generalizing findings remains challenging due to limited data, sampling variability, unreported complexities, low model accuracy, and a lack of interpretability. To address these issues and minimize extensive experimentation, we combined quantum chemistry calculations with published toxicity data to develop a machine learning model achieving over 90% accuracy in cross-validation. Utilizing 39 descriptors extracted from 152 articles, our dataset comprises 2765 instances covering various nanoparticle types, detection methods, and cell types. We enhanced data representation with the Jaccard similarity coefficient and employed Feature Importance and Shapley Additive Explanations (SHAP) to identify key factors influencing cytotoxicity, such as concentration, exposure time, zeta potential, diameter, COSMO area (CA), coating, testing methods, cell types, metal electronegativity, HOMO energy, and molecular weight. Additionally, we analyzed the interactions among these features and their influence on predictions, synthesized novel metal oxide nanoparticles, and assessed their physicochemical properties and anti-tumor toxicity. Cytotoxicity experiments with newly synthesized nanoparticles further validated the model's accuracy and generalizability, revealing hidden relationships and enabling predictions for previously unseen samples. This approach supports preliminary computer-aided screenings, significantly reducing the need for labor-intensive experimentation.

摘要

了解金属和金属氧化物纳米颗粒(M/MOx NPs)的毒性行为对于有效的肿瘤诊断和治疗至关重要,但由于数据有限、采样变异性、未报告的复杂性、模型准确性低以及缺乏可解释性,归纳研究结果仍然具有挑战性。为了解决这些问题并尽量减少大量实验,我们将量子化学计算与已发表的毒性数据相结合,开发了一种在交叉验证中准确率超过90%的机器学习模型。利用从152篇文章中提取的39个描述符,我们的数据集包含2765个实例,涵盖了各种纳米颗粒类型、检测方法和细胞类型。我们用杰卡德相似系数增强了数据表示,并采用特征重要性和夏普利加法解释(SHAP)来识别影响细胞毒性的关键因素,如浓度、暴露时间、zeta电位、直径、COSMO面积(CA)、涂层、测试方法、细胞类型、金属电负性、最高占据分子轨道(HOMO)能量和分子量。此外,我们分析了这些特征之间的相互作用及其对预测的影响,合成了新型金属氧化物纳米颗粒,并评估了它们的物理化学性质和抗肿瘤毒性。对新合成的纳米颗粒进行的细胞毒性实验进一步验证了模型的准确性和通用性,揭示了隐藏的关系,并能够对以前未见过的样本进行预测。这种方法支持初步的计算机辅助筛选,显著减少了对劳动密集型实验的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/288f/12132100/cb3b32c8b077/d5ra02309b-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验