Suppr超能文献

生物物理建模表明,外伤性脑损伤后提高 GABA 激动剂疗效的最佳药物组合。

Biophysical Modeling Suggests Optimal Drug Combinations for Improving the Efficacy of GABA Agonists after Traumatic Brain Injuries.

机构信息

1 Department of Psychology, University of Michigan, Ann Arbor, Michigan.

2 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.

出版信息

J Neurotrauma. 2019 May 15;36(10):1632-1645. doi: 10.1089/neu.2018.6065. Epub 2019 Jan 8.

Abstract

Traumatic brain injuries (TBI) lead to dramatic changes in the surviving brain tissue. Altered ion concentrations, coupled with changes in the expression of membrane-spanning proteins, create a post-TBI brain state that can lead to further neuronal loss caused by secondary excitotoxicity. Several GABA receptor agonists have been tested in the search for neuroprotection immediately after an injury, with paradoxical results. These drugs not only fail to offer neuroprotection, but can also slow down functional recovery after TBI. Here, using computational modeling, we provide a biophysical hypothesis to explain these observations. We show that the accumulation of intracellular chloride ions caused by a transient upregulation of Na-K-2Cl (NKCC1) co-transporters as observed following TBI, causes GABA receptor agonists to lead to excitation and depolarization block, rather than the expected hyperpolarization. The likelihood of prolonged, excitotoxic depolarization block is further exacerbated by the extremely high levels of extracellular potassium seen after TBI. Our modeling results predict that the neuroprotective efficacy of GABA receptor agonists can be substantially enhanced when they are combined with NKCC1 co-transporter inhibitors. This suggests a rational, biophysically principled method for identifying drug combinations for neuroprotection after TBI.

摘要

创伤性脑损伤 (TBI) 会导致存活脑组织发生剧烈变化。离子浓度的改变,加上跨膜蛋白表达的变化,会导致 TBI 后出现继发性兴奋性毒性导致的进一步神经元丢失。为了在损伤后立即寻找神经保护作用,已经测试了几种 GABA 受体激动剂,但结果却适得其反。这些药物不仅不能提供神经保护作用,反而会减缓 TBI 后的功能恢复。在这里,我们使用计算建模提供了一个生物物理假设来解释这些观察结果。我们表明,TBI 后观察到的 Na-K-2Cl(NKCC1)共转运体的短暂上调导致细胞内氯离子积累,导致 GABA 受体激动剂导致兴奋和去极化阻断,而不是预期的超极化。TBI 后观察到的细胞外钾离子水平极高,进一步加剧了长时间、兴奋性去极化阻断的可能性。我们的建模结果预测,当 GABA 受体激动剂与 NKCC1 共转运体抑制剂联合使用时,其神经保护作用的效果可以大大增强。这表明了一种合理的、基于生物物理原理的方法,可以确定 TBI 后神经保护作用的药物组合。

相似文献

4
WNK3 Promotes Neuronal Survival after Traumatic Brain Injury in Rats.WNK3 促进大鼠创伤性脑损伤后的神经元存活。
Neuroscience. 2021 Nov 21;477:76-88. doi: 10.1016/j.neuroscience.2021.09.021. Epub 2021 Oct 6.

引用本文的文献

本文引用的文献

1
Origin of slow spontaneous resting-state neuronal fluctuations in brain networks.脑网络中慢自发静息态神经元波动的起源。
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6858-6863. doi: 10.1073/pnas.1715841115. Epub 2018 Jun 8.
3
Rationalizing combination therapies.使联合疗法合理化。
Nat Med. 2017 Oct 6;23(10):1113. doi: 10.1038/nm.4426.
7
Dopamine Neurons Change the Type of Excitability in Response to Stimuli.多巴胺神经元会根据刺激改变兴奋性类型。
PLoS Comput Biol. 2016 Dec 8;12(12):e1005233. doi: 10.1371/journal.pcbi.1005233. eCollection 2016 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验