Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China.
Nat Prod Rep. 2019 Apr 17;36(4):561-572. doi: 10.1039/c8np00060c.
Covering: up to June 2018 Understanding the biosynthetic mechanisms that generate the astounding structural complexity and variety of fungal secondary metabolites (FSMs) remains a challenge. As an example, the biogenesis of the Monascus azaphilone pigments (MonAzPs) has remained obscure until recently despite the significant medical potential of these metabolites and their long history of widespread use as food colorants. However, a considerable progress has been made in recent years towards the elucidation of MonAzPs biosynthesis in various fungi. In this highlight, we correlate a unified biosynthetic pathway with the diverse structures of the 111 MonAzPs congeners reported until June 2018. We also discuss the origins of structural diversity amongst MonAzPs analogues and summarize new research directions towards exploring novel MonAzPs. The case of MonAzPs illuminates the various ways that FSMs metabolic complexity emerges by the interplay of biosynthetic pathway determinism with metabolic and chemical serendipity.
截至 2018 年 6 月了解产生真菌次生代谢产物(FSM)惊人结构复杂性和多样性的生物合成机制仍然是一个挑战。例如,尽管这些代谢产物具有重要的医学潜力,并且长期以来一直被广泛用作食品着色剂,但直到最近,红曲色素(MonAzPs)的生物发生仍然不清楚。然而,近年来在阐明各种真菌中 MonAzPs 生物合成方面取得了相当大的进展。在这篇重点介绍中,我们将统一的生物合成途径与截至 2018 年 6 月报道的 111 种 MonAzPs 同系物的不同结构相关联。我们还讨论了 MonAzPs 类似物结构多样性的起源,并总结了探索新型 MonAzPs 的新研究方向。MonAzPs 的情况说明了 FSM 代谢复杂性是如何通过生物合成途径确定性与代谢和化学偶然性的相互作用而出现的。