Suppr超能文献

闭合和打开 HIV-1 包膜糖蛋白 SOSIP 三聚体糖盾上的孔,可以将中和抗体反应重新引导到新暴露的表位上。

Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes.

机构信息

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.

Department of Integrative Structural and Computational Biology, IAVI Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA.

出版信息

J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01656-18. Print 2019 Feb 15.

Abstract

In HIV-1 vaccine research, native-like, soluble envelope glycoprotein SOSIP trimers are widely used for immunizing animals. The epitopes of autologous neutralizing antibodies (NAbs) induced by the BG505 and B41 SOSIP trimers in rabbits and macaques have been mapped to a few holes in the glycan shields that cover most of the protein surfaces. For BG505 trimers, the dominant autologous NAb epitope in rabbits involves residues that line a cavity caused by the absence of a glycan at residue 241. Here, we blocked this epitope in BG505 SOSIPv4.1 trimer immunogens by knocking in an N-linked glycan at residue 241. We then opened holes elsewhere on the trimer by knocking out single N-linked glycans at residues 197, 234, 276, 332, and 355 and found that NAb responses induced by the 241-glycan-bearing BG505 trimers were frequently redirected to the newly opened sites. The strongest evidence for redirection of the NAb response to neoepitopes, through the opening and closing of glycan holes, was obtained from trimer immunogen groups with the highest occupancy of the N241 site. We also attempted to knock in the N289-glycan to block the sole autologous NAb epitope on the B41 SOSIP.v4.1 trimer. Although a retrospective analysis showed that the new N289-glycan site was substantially underoccupied, we found some evidence for redirection of the NAb response to a neoepitope when this site was knocked in and the N356-glycan site knocked out. In neither study, however, was redirection associated with increased neutralization of heterologous tier 2 viruses. Engineered SOSIP trimers mimic envelope-glycoprotein spikes, which stud the surface of HIV-1 particles and mediate viral entry into cells. When used for immunizing test animals, they elicit antibodies that neutralize resistant sequence-matched HIV-1 isolates. These neutralizing antibodies recognize epitopes in holes in the glycan shield that covers the trimer. Here, we added glycans to block the most immunogenic neutralization epitopes on BG505 and B41 SOSIP trimers. In addition, we removed selected other glycans to open new holes that might expose new immunogenic epitopes. We immunized rabbits with the various glycan-modified trimers and then dissected the specificities of the antibody responses. Thus, in principle, the antibody response might be diverted from one site to a more cross-reactive one, which would help in the induction of broadly neutralizing antibodies by HIV-1 vaccines based on envelope glycoproteins.

摘要

在 HIV-1 疫苗研究中,天然样、可溶性包膜糖蛋白 SOSIP 三聚体被广泛用于免疫动物。BG505 和 B41 SOSIP 三聚体在兔子和猕猴中诱导的自体中和抗体 (NAb) 的表位已被定位到覆盖大部分蛋白表面的聚糖屏蔽中的几个孔上。对于 BG505 三聚体,兔子中自体主导性 NAb 表位涉及到由于残基 241 处缺乏聚糖而导致的腔中的残基。在这里,我们通过在残基 241 处敲入一个 N-连接聚糖来阻断 BG505 SOSIPv4.1 三聚体免疫原中的这个表位。然后,我们通过敲除残基 197、234、276、332 和 355 处的单个 N-连接聚糖,在三聚体上打开了其他孔,发现带有 241 个聚糖的 BG505 三聚体诱导的 NAb 反应经常被重新定向到新打开的部位。通过打开和关闭聚糖孔,将 NAb 反应重定向到新表位的最强证据来自 241 位 N 聚糖占据最高的三聚体免疫原组。我们还试图敲入 N289-聚糖以阻断 B41 SOSIP.v4.1 三聚体上唯一的自体 NAb 表位。尽管回顾性分析表明,新的 N289-聚糖位点被大大占用,但当敲入该位点并敲除 N356-聚糖位点时,我们发现 NAb 反应被重新定向到一个新表位的一些证据。然而,在这两项研究中,重定向都与增加对异源 tier 2 病毒的中和作用无关。工程化的 SOSIP 三聚体模拟覆盖 HIV-1 颗粒表面并介导病毒进入细胞的包膜糖蛋白刺突。当用于免疫测试动物时,它们会引发中和抵抗性匹配的 HIV-1 分离株的抗体。这些中和抗体识别覆盖三聚体的聚糖屏蔽中的孔中的表位。在这里,我们添加聚糖以阻断 BG505 和 B41 SOSIP 三聚体上最具免疫原性的中和表位。此外,我们去除了选定的其他聚糖,以打开可能暴露新免疫原性表位的新孔。我们用各种糖基化的三聚体免疫兔子,然后分析抗体反应的特异性。因此,原则上,抗体反应可能从一个位点转移到一个更具交叉反应性的位点,这有助于基于包膜糖蛋白的 HIV-1 疫苗诱导广泛中和抗体。

相似文献

2
The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization.
J Virol. 2022 Jan 12;96(1):e0155221. doi: 10.1128/JVI.01552-21. Epub 2021 Oct 20.
3
Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques.
PLoS Pathog. 2018 Feb 23;14(2):e1006913. doi: 10.1371/journal.ppat.1006913. eCollection 2018 Feb.
5
Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers.
J Virol. 2017 Jul 12;91(15). doi: 10.1128/JVI.00677-17. Print 2017 Aug 1.
6
Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes.
J Virol. 2019 Sep 30;93(20). doi: 10.1128/JVI.01188-19. Print 2019 Oct 15.
9
Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity.
J Virol. 2015 Oct;89(20):10383-98. doi: 10.1128/JVI.01653-15. Epub 2015 Aug 5.
10
Neutralizing Antibodies Induced by First-Generation gp41-Stabilized HIV-1 Envelope Trimers and Nanoparticles.
mBio. 2021 Jun 29;12(3):e0042921. doi: 10.1128/mBio.00429-21. Epub 2021 Jun 22.

引用本文的文献

1
Transient glycan shield reduction induces CD4-binding site broadly neutralizing antibodies in SHIV-infected macaques.
Cell Rep. 2025 Jun 24;44(6):115848. doi: 10.1016/j.celrep.2025.115848. Epub 2025 Jun 13.
4
Mosaic and mixed HIV-1 glycoprotein nanoparticles elicit antibody responses to broadly neutralizing epitopes.
PLoS Pathog. 2024 Oct 3;20(10):e1012558. doi: 10.1371/journal.ppat.1012558. eCollection 2024 Oct.
5
Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines.
NPJ Vaccines. 2024 Apr 6;9(1):74. doi: 10.1038/s41541-024-00862-8.
6
Bringing immunofocusing into focus.
NPJ Vaccines. 2024 Jan 9;9(1):11. doi: 10.1038/s41541-023-00792-x.
7
Glycosylation shapes the efficacy and safety of diverse protein, gene and cell therapies.
Biotechnol Adv. 2023 Oct;67:108206. doi: 10.1016/j.biotechadv.2023.108206. Epub 2023 Jun 22.
8
Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization.
Retrovirology. 2023 May 27;20(1):9. doi: 10.1186/s12977-023-00624-9.
9
Glycan masking in vaccine design: Targets, immunogens and applications.
Front Immunol. 2023 Mar 23;14:1126034. doi: 10.3389/fimmu.2023.1126034. eCollection 2023.

本文引用的文献

1
Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth.
Cell Rep. 2018 Oct 23;25(4):893-908.e7. doi: 10.1016/j.celrep.2018.09.087.
2
Site-Specific Glycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen.
Cell Rep. 2018 Aug 21;24(8):1958-1966.e5. doi: 10.1016/j.celrep.2018.07.080.
4
Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1.
Nat Med. 2018 Jun;24(6):857-867. doi: 10.1038/s41591-018-0042-6. Epub 2018 Jun 4.
5
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure.
Immunity. 2018 May 15;48(5):855-871. doi: 10.1016/j.immuni.2018.04.029.
6
Structure and Immune Recognition of the HIV Glycan Shield.
Annu Rev Biophys. 2018 May 20;47:499-523. doi: 10.1146/annurev-biophys-060414-034156. Epub 2018 Mar 29.
7
Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques.
PLoS Pathog. 2018 Feb 23;14(2):e1006913. doi: 10.1371/journal.ppat.1006913. eCollection 2018 Feb.
8
Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages.
J Proteome Res. 2018 Mar 2;17(3):987-999. doi: 10.1021/acs.jproteome.7b00639. Epub 2018 Feb 8.
10
Neutralization tiers of HIV-1.
Curr Opin HIV AIDS. 2018 Mar;13(2):128-136. doi: 10.1097/COH.0000000000000442.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验